Room Acoustics – Fundamentals and Computer Simulation

Part of the Springer Handbooks book series (SPRINGERHAND)

Abstract

In room acoustics analytical formulas and computer simulations can be used to predict the acoustics of spaces, not only in terms of reverberation but other perceptual aspects, too, which are related to the perception of music or speech. In this context the room impulse response is the function of main interest. It can be measured by using sophisticated instrumentation and signal processing, or it can be simulated with computer models. In the process of auralization the data and signal processing enables one to listen into the simulated rooms in order to interpret the sound in the room aurally. In real-time implementation, this is a valuable extension of the technique of virtual reality.

2-D

two-dimensional

3-D

three-dimensional

ASW

apparent source width

BEM

boundary element method

CT

center time

EDT

early decay time

FDTD

finite-difference time domain

FEM

finite element method

FFT

fast Fourier transform

FHT

fast Hadamard transformation

HRIR

head-related impulse response

HRTF

head-related transfer function

JND

just-noticeable difference

LEV

listener envelopment

LF

lateral energy fraction

LTI

linear time-invariant

MLS

maximum length sequence

WFA

wave field analysis

References

  1. 11.1
    ISO 3382: Measurement of the reverberation time of rooms with reference to other acoustical parameters (1995)Google Scholar
  2. 11.2
    L. Beranek: Concert Halls and Opera Houses – Music, Acoustics and Architecture, 2nd edn. (Springer, New York 2004)Google Scholar
  3. 11.3
    M. Barron: Auditorium Acoustics and Architectural Design, 2nd edn. (E&FN SPON, London 2010)Google Scholar
  4. 11.4
    M.R. Schröder: Die statistischen Parameter der Frequenzkurven von großen Räumen, Acustica 4, 595 (1954)Google Scholar
  5. 11.5
    H. Kuttruff, M.R. Schroeder: On frequency response curves in rooms. Comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing between maxima, J. Acoust. Soc. Am. 34, 76 (1962)CrossRefGoogle Scholar
  6. 11.6
    W.C. Sabine: The American Architect 1900. Collected Papers Nr. 1 (Harvard Univ. Press, Cambridge 1922)Google Scholar
  7. 11.7
    R.F. Norris, C.A. Andree: An instrumental method of reverberation measurement, J. Acoust. Soc. Am. 3, 366 (1930)CrossRefGoogle Scholar
  8. 11.8
    C.F. Eyring: Methods of calculating the average coefficient of sound absorption, J. Acoust. Soc. Am. 4, 178 (1933)CrossRefGoogle Scholar
  9. 11.9
    M. Vorländer: Revised relation between the sound power and the average sound pressure level in rooms, Acustica 81, 332 (1995)Google Scholar
  10. 11.10
    L. Cremer: Die wissenschaftlichen Grundlagen der Raumakustik (Hirzel, Stuttgart 1948)Google Scholar
  11. 11.11
    J. Blauert: Spatial Hearing – Revised Edition: The Psychophysics of Human Sound Localization (MIT Press, Cambridge 1996)Google Scholar
  12. 11.12
    M.R. Schroeder: New method for measuring reverberation time, J. Acoust. Soc. Am. 37, 409 (1965)CrossRefGoogle Scholar
  13. 11.13
    M. Guski, M. Vorländer: Comparison of noise compensation methods for room acoustic impulse response evaluations, Acust. Acta Acust. 100, 320 (2014)CrossRefGoogle Scholar
  14. 11.14
    N. Xiang: Evaluation of reverberation times using a nonlinear regression approach, J. Acoust. Soc. Am. 98, 2112 (1995)CrossRefGoogle Scholar
  15. 11.15
    S. Müller: Computer-generated pulse signal applied for sound measurements. In: ASA Handbook of Signal Processing in Acoustics, ed. by D. Havelock, S. Kuwano, M. Vorländer (Springer, New York 2005)Google Scholar
  16. 11.16
    A. Farina: Simultaneous measurement of impulse response and distortion with a swept-sine technique. In: AES 108th Convention, Paris (2000)Google Scholar
  17. 11.17
    P. Dietrich, B. Masiero, M. Vorländer: On the optimization of the multiple exponential sweep method, J. Audio Eng. Soc. 61(3), 113 (2013)Google Scholar
  18. 11.18
    D. Rife, J. Vanderkooy: Transfer-function measurement with maximum-length sequences, J. Audio Eng. Soc. 37, 419 (1989)Google Scholar
  19. 11.19
    M. Vorländer, M. Kob: Practical aspects of MLS measurements in building acoustics, Appl. Acoust. 52, 239 (1997)CrossRefGoogle Scholar
  20. 11.20
    R. Thiele: Richtungsverteilung und Zeitfolge der Schallrückwürfe in Räumen, Acustica 3, 291 (1953)Google Scholar
  21. 11.21
    V.L. Jordan: Acoustical criteria for auditoriums and their relation to model techniques, J. Acoust. Soc. Am. 47, 408 (1970)CrossRefGoogle Scholar
  22. 11.22
    W. Reichardt, O.A. Alim, W. Schmidt: Abhängigkeit der Grenzen zwischen brauchbarer und unbrauchbarer Durchsichtigkeit von der Art des Musikmotives, der Nachhallzeit und der Nachhalleinsatzzeit, Appl. Acoust. 7, 243 (1974)CrossRefGoogle Scholar
  23. 11.23
    W. Wilkens: Mehrdimensionale Beschreibung subjektiver Beurteilungen der Akustik von Konzertsälen, Ph.D. Thesis (Technical University Berlin, Berlin 1975)Google Scholar
  24. 11.24
    P. Lehmann: Über die Ermittlung raumakustischer Kriterien und deren Zusammenhang mit subjektiven Beurteilungen der Hörsamkeit, Ph.D. Thesis (Technical University Berlin, Berlin 1976)Google Scholar
  25. 11.25
    D. Gottlob: Vergleich objektiver Parameter mit Ergebnissen subjektiver Untersuchungen an Konzertsälen, Ph.D. Thesis (Göttingen University, Göttingen 1973)Google Scholar
  26. 11.26
    K.F. Siebrasse: Vergleichende subjektive Untersuchungen zur Akustik von Konzertsälen, Ph.D. Thesis (Göttingen University, Göttingen 1973)Google Scholar
  27. 11.27
    J. West: Possible subjective significance of the ratio of height to width of concert halls, J. Acoust. Soc. Am. 40, 1245 (1966)CrossRefGoogle Scholar
  28. 11.28
    H. Marshall: Levels of reflection masking in concert halls, J. Sound Vib. 5, 116 (1968)CrossRefGoogle Scholar
  29. 11.29
    M. Barron: The effects of early reflections on subjective acoustical quality of concert halls, Ph.D. Thesis (Southampton University, Southampton 1976)Google Scholar
  30. 11.30
    P. Damaske, Y. Ando: Interaural crosscorrelation for multichannel loudspeaker reproduction, Acustica 27, 232 (1972)Google Scholar
  31. 11.31
    H. Kuttruff: Room Acoustics (Elsevier, Amsterdam 1973)CrossRefGoogle Scholar
  32. 11.32
    J. Meyer: Trends in concert hall design – A review of the past 50 years. In: 26 Tonmeistertagung – VDT Int. Convention (2010), in GermanGoogle Scholar
  33. 11.33
    D. van Maerke: Simulation of sound fields in time and frequency domain using a geometrical model. In: Proc. 12th ICA, Toronto, Vol. 2 (1986), paper E11-7Google Scholar
  34. 11.34
    M. Vorländer: Simulation of the transient and steady state sound propagation in rooms using a new combined sound particle – Image source algorithm, J. Acoust. Soc. Am. 86, 172 (1989)CrossRefGoogle Scholar
  35. 11.35
    B.I. Dalenbäck: Room acoustic prediction based on a unified treatment of diffuse and specular reflection, J. Acoust. Soc. Am. 100, 899 (1996)CrossRefGoogle Scholar
  36. 11.36
    G.M. Naylor: Odeon-another hybrid room acoustical model, Appl. Acoust. 38, 131 (1993)CrossRefGoogle Scholar
  37. 11.37
    M. Vorländer: International round robin on room acoustical computer simulations. In: Proc. 15th ICA, Trondheim (1995) p. 689Google Scholar
  38. 11.38
    I. Bork: A Comparison of room simulation software – The 2nd round robin on room acoustical computer simulation, Acust. Acta Acust. 84, 943 (2000)Google Scholar
  39. 11.39
    I. Bork: Report on the 3rd round robin on room acoustical computer simulation – Part II: Calculations, Acust. Acta Acust. 91, 753 (2005)Google Scholar
  40. 11.40
    ISO 17497-1: Acoustics – Measurement of the sound scattering properties of surfaces – Part 1: Measurement of the random-incidence scattering coefficient in a reverberation room (2004)Google Scholar
  41. 11.41
    F.P. Mechel: Improved mirror source method in room acoustics, J. Sound Vib. 256(5), 873 (2002)CrossRefGoogle Scholar
  42. 11.42
    S. Siltanen, T. Lokki, S. Kiminki, L. Savioja: The room acoustic rendering equation, J. Acoust. Soc. Am. 122(3), 1624 (2007)CrossRefGoogle Scholar
  43. 11.43
    M. Vorländer: Auralization – Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality (Springer, Berlin 2008)Google Scholar
  44. 11.44
    D. Lee, D. Cabrera, W.L. Martens: Equal reverberance contours for synthetic room impulse responses listened to directly: Evaluation of reverberance in terms of loudness decay parameters. In: Int. Symp. Room Acoust., Melbourne (2010)Google Scholar
  45. 11.45
    J.H. Chalupper: Fastl: Dynamic loudness model (DLM) for normal and hearing-impaired listeners, Acust. Acta Acust. 88, 379 (2002)Google Scholar
  46. 11.46
    DIN 45631 A1: Calculation of loudness level and loudness from the sound spectrum – Zwicker method – Amendment 1: Calculation of the loudness of time-variant sound (2010)Google Scholar
  47. 11.47
    L.A. Jeffress: A place theory of sound localization, J. Comp. Physiol. Psychol. 41, 35 (1948)CrossRefGoogle Scholar
  48. 11.48
    W. Lindemann: Extension of a binaural cross-correlation model by means of contralateral inhibition. II. The law of the first wave front, J. Acoust. Soc. Am. 80, 1623 (1986)CrossRefGoogle Scholar
  49. 11.49
    T. Dau, D. Püschel, A. Kohlrausch: A quantitative model of the effective signal processing in the auditory system. I. Model structure, J. Acoust. Soc. Am. 99, 3615 (1996)CrossRefGoogle Scholar
  50. 11.50
    J. Breebaart, S. van de Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. I. Model setup, J. Acoust. Soc. Am. 110, 1074 (2001)CrossRefGoogle Scholar
  51. 11.51
    J. van Dorp Schuitman, D. de Vries: Deriving Room Acoustical Parameters Using Arrays and Hearing Models (NAG/DAGA, Rotterdam 2009)Google Scholar
  52. 11.52
    ISO/IEC Guide 98: Guide to the expression of uncertainty in measurement (GUM) (1993)Google Scholar
  53. 11.53
    R. San Martín, I. Witew, M. Arana, M. Vorländer: Influence of the source orientation on the measurement of acoustic parameters, Acust. Acta Acust. 93, 387 (2007)Google Scholar
  54. 11.54
    I. Witew, A. Lindau, J. van Dorp Schuitman, M. Vorländer, S. Weinzierl, D. de Vries: Application of GUM concepts on uncertainties of IACC caused by dummy head orientation (DAGA, Berlin 2010)Google Scholar
  55. 11.55
    T. Lokki, J. Pätynen, A. Kuusinen, S. Tervo: Concert hall acoustics: Repertoire, listening position and individual taste of the listeners influence the qualitative attributes and preferences, J. Acoust. Soc. Am. 140(1), 551 (2016)CrossRefGoogle Scholar
  56. 11.56
    S. Weinzierl, M. Vorländer: Room acoustical parameters as predictors of room acoustical impression: What do we know and what would we like to know?, Acoust. Aust. 1, 41 (2015)CrossRefGoogle Scholar
  57. 11.57
    T. Beghin: The Virtual Haydn (University of Chicago Press, Chicago 2015)CrossRefGoogle Scholar
  58. 11.58
    D. de Vries, E.M. Hulsebos, J. Baan: Spatial fluctuations in measures for spaciousness, J. Acoust. Soc. Am. 110, 947 (2001)CrossRefGoogle Scholar
  59. 11.59
    A.J. Berkhout, D. de Vries, J.J. Sonke: Array technology for acoustic wave field analysis in enclosures, J. Acoust. Soc. Am. 102, 2757 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Institute of Technical AcousticsRWTH Aachen UniversityAachenGermany

Personalised recommendations