Lignin-Based Polyurethane (PU) Resins and Foams

  • Chunbao XuEmail author
  • Fatemeh Ferdosian
Part of the Green Chemistry and Sustainable Technology book series (GCST)


This chapter overviews the production and properties of lignin-based polyurethane (LPU) for various applications such as elastomers, coatings, adhesives, flexible foams, and semi-rigid or rigid foams. Lignin with hydroxyl groups on its structure could be used as a substitute for polyol in the synthesis of polyurethane. Lignin can be incorporated in polyurethane without pre-treatment or with chemical modifications, e.g., oxypropylation, esterification, etherification reactions, and depolymerization. Chemical modifications of lignin produce modified lignin with enhanced reactivity, which enables synthesis of LPU at a higher biosubstitution ratio, and the resulted LPU products demonstrated acceptable performance in various industrial applications.


Lignin-based polyurethane (LPU) Elastomers Coatings Adhesives Flexible foams Semi-rigid or rigid foams Chemical modifications Oxypropylation Esterification Etherification reactions Depolymerization 


  1. 1.
    Szycher M (2013) Szycher’s handbook of polyurethanes, 2nd edn. CRC Press, New YorkGoogle Scholar
  2. 2.
    Meier-Westhues U (2007) Polyurethanes: coatings, adhesives and sealants. Vincentz Network GmbH & Co KG, Hannover, GermanyGoogle Scholar
  3. 3.
    Luo X, Mohanty A, Misra M (2013) Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind Crops Prod 47:13–19. doi: 10.1016/j.indcrop.2013.01.040 CrossRefGoogle Scholar
  4. 4.
    Ghumare N (2015) Despite volatile raw material prices, polyols and polyurethane market poised to exhibit steady growth till 2023.
  5. 5.
    Luo N, Qian J, Cupps J, et al (2008) Natural oil polyol of high reactivity for rigid polyurethane. In: Polyurethanes technical conference America Chemistry Council, Alihgton, Va, pp 801–808Google Scholar
  6. 6.
    Miao S, Zhang S, Su Z, Wang P (2013) Synthesis of bio-based polyurethanes from epoxidized soybean oil and isopropanolamine. J Appl Polym Sci 127:1929–1936. doi: 10.1002/app.37564 CrossRefGoogle Scholar
  7. 7.
    Bueno-Ferrer C, Hablot E, Garrigos MDC et al (2012) Relationship between morphology, properties and degradation parameters of novative biobased thermoplastic polyurethanes obtained from dimer fatty acids. Polym Degrad Stab 97:1964–1969. doi: 10.1016/j.polymdegradstab.2012.03.002 CrossRefGoogle Scholar
  8. 8.
    Ji D, Fang Z, He W et al (2015) Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol. Ind Crops Prod 74:76–82. doi: 10.1016/j.indcrop.2015.04.041 CrossRefGoogle Scholar
  9. 9.
    Fu C, Zheng Z, Yang Z et al (2013) A fully bio-based waterborne polyurethane dispersion from vegetable oils: From synthesis of precursors by thiol-ene reaction to study of final material. Prog Org Coatings 77:53–60. doi: 10.1016/j.porgcoat.2013.08.002 CrossRefGoogle Scholar
  10. 10.
    Gurunathan T, Mohanty S, Nayak SK (2015) Isocyanate terminated castor oil-based polyurethane prepolymer: synthesis and characterization. Prog Org Coatings 80:39–48. doi: 10.1016/j.porgcoat.2014.11.017 CrossRefGoogle Scholar
  11. 11.
    Ugarte L, Saralegi A, Fernández R et al (2014) Flexible polyurethane foams based on 100% renewably sourced polyols. Ind Crops Prod 62:545–551. doi: 10.1016/j.indcrop.2014.09.028 CrossRefGoogle Scholar
  12. 12.
    Zhang C (2014) Polyurethane films, foams and nanocomposites prepared from vegetable oil-based polyols. Dissertation. Iowa State UniversityGoogle Scholar
  13. 13.
    Nik Pauzi NNP, Majid RA, Dzulkifli MH, Yahya MY (2014) Development of rigid bio-based polyurethane foam reinforced with nanoclay. Compos Part B Eng 67:521–526. doi: 10.1016/j.compositesb.2014.08.004 CrossRefGoogle Scholar
  14. 14.
    Chuayjuljit S, Maungchareon A, Saravari O (2010) Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams. J Reinf Plast Compos 29:218–225. doi: 10.1177/0731684408096949 CrossRefGoogle Scholar
  15. 15.
    Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: II. Foams. JAOCS, J Am Oil Chem Soc 84:65–72. doi: 10.1007/s11746-006-1006-4 CrossRefGoogle Scholar
  16. 16.
    Kurańska M, Prociak A, Kirpluks M, Cabulis U (2015) Polyurethane–polyisocyanurate foams modified with hydroxyl derivatives of rapeseed oil. Ind Crops Prod 74:849–857. doi: 10.1016/j.indcrop.2015.06.006 CrossRefGoogle Scholar
  17. 17.
    Zia F, Zia KM, Zuber M et al (2015) Starch based polyurethanes: a critical review updating recent literature. Carbohydr Polym 134:784–798. doi: 10.1016/j.carbpol.2015.08.034 CrossRefGoogle Scholar
  18. 18.
    Liu G, Wu G, Chen J et al (2015) Synthesis and properties of POSS-containing gallic acid-based non-isocyanate polyurethanes coatings. Polym Degrad Stab 121:247–252. doi: 10.1016/j.polymdegradstab.2015.09.013 CrossRefGoogle Scholar
  19. 19.
    Patel CJ, Mannari V (2014) Air-drying bio-based polyurethane dispersion from cardanol: synthesis and characterization of coatings. Prog Org Coatings 77:997–1006. doi: 10.1016/j.porgcoat.2014.02.006 CrossRefGoogle Scholar
  20. 20.
    Fu C, Liu J, Xia H, Shen L (2015) Effect of structure on the properties of polyurethanes based on aromatic cardanol-based polyols prepared by thiol-ene coupling. Prog Org Coatings 83:19–25. doi: 10.1016/j.porgcoat.2015.01.020 CrossRefGoogle Scholar
  21. 21.
    Chen F, Lu Z (2009) Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. J Appl Polym Sci 111:508–516. doi: 10.1002/app CrossRefGoogle Scholar
  22. 22.
    Ciobanu C, Ungureanu M, Ignat L et al (2004) Properties of lignin-polyurethane films prepared by casting method. Ind Crops Prod 20:231–241. doi: 10.1016/j.indcrop.2004.04.024 CrossRefGoogle Scholar
  23. 23.
    Liu ZM, Yu F, Fang GZ, Yang HJ (2009) Performance characterization of rigid polyurethane foam with refined alkali lignin and modified alkali lignin. J For Res 20:161–164. doi: 10.1007/s11676-009-0028-9 CrossRefGoogle Scholar
  24. 24.
    Pan X, Saddler JN (2013) Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol Biofuels 6:1–12. doi: 10.1186/1754-6834-6-12 CrossRefGoogle Scholar
  25. 25.
    Pohjanlehto H, Setaelae HM, Kiely DE, McDonald AG (2014) Lignin-xylaric acid-polyurethane-based polymer network systems: preparation and characterization. J Appl Polym Sci 131:1–7. doi: 10.1002/app.39714 CrossRefGoogle Scholar
  26. 26.
    Hojabri L, Kong X, Narine SS (2010) Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J Polym Sci, Part A: Polym Chem 48:3302–3310. doi: 10.1002/pola.24114 CrossRefGoogle Scholar
  27. 27.
    Li S, Jose J, Bouzidi L et al (2014) Maximizing the utility of bio-based diisocyanate and chain extenders in crystalline segmented thermoplastic polyester urethanes: effect of polymerization protocol. Polymer (Guildf) 55:6764–6775. doi: 10.1016/j.polymer.2014.11.013 CrossRefGoogle Scholar
  28. 28.
    Cinelli P, Anguillesi I, Lazzeri A (2013) Green synthesis of flexible polyurethane foams from liquefied lignin. Eur Polym J 49:1174–1184. doi: 10.1016/j.eurpolymj.2013.04.005 CrossRefGoogle Scholar
  29. 29.
    Yoshida H, Morck R, Kringstad KP, Hatakeyama H (1990) Kraft lignin in polyurethanes. 2. Effects of the molecular-weight of kraft lignin on the properties of polyurethanes from a kraft lignin polyether triol polymeric MDI system. J Appl Polym Sci 40:1819–1832CrossRefGoogle Scholar
  30. 30.
    Vanderlaan MN, Thring RW (1998) Polyurethanes from Alcell lignin fractions obtained by sequential solvent extraction. Biomass Bioenerg 14:525–531. doi: 10.1016/S0961-9534(97)10058-7 CrossRefGoogle Scholar
  31. 31.
    Mahmood N, Yuan Z, Schmidt J, Xu CC (2015) Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized Kraft lignin via direct replacement or oxypropylation. Eur Polym J 68:1–9. doi: 10.1016/j.eurpolymj.2015.04.030 CrossRefGoogle Scholar
  32. 32.
    Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2008) Lignin-based polyurethane materials. In: 10th international chemical and biological engineering conference—CHEMPOR 2008. Braga, Portugal, pp 231–236Google Scholar
  33. 33.
    Nadji H, Bruzzèse C, Belgacem MN et al (2005) Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol Mater Eng 290:1009–1016. doi: 10.1002/mame.200500200 CrossRefGoogle Scholar
  34. 34.
    Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48CrossRefGoogle Scholar
  35. 35.
    Glasser WG, Nieh W, Kelley SS, Oliveira W de (1988) Method of producing prepolymers from hydroxyalkyl lignin derivatives, US Patent 4,918,167, 19 Apr 1988Google Scholar
  36. 36.
    Glasser WG, De Oliveira W, Kelley SS, Nieh LS (1990) Method of producing prepolymers from hydroxyalkyl lignin derivatives, US Patent 5,102,992, 20 Apr 1990Google Scholar
  37. 37.
    Li Y, Ragauskas AJ (2012) Kraft lignin-based rigid polyurethane foam. J Wood Chem Technol 32:210–224. doi: 10.1080/02773813.2011.652795 CrossRefGoogle Scholar
  38. 38.
    Cateto CA, Barreiro MF, Rodrigues AE (2008) Monitoring of lignin-based polyurethane synthesis by FTIR-ATR. Ind Crops Prod 27:168–174. doi: 10.1016/j.indcrop.2007.07.018 CrossRefGoogle Scholar
  39. 39.
    Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2011) Kinetic study of the formation of lignin-based polyurethanes in bulk. React Funct Polym 71:863–869. doi: 10.1016/j.reactfunctpolym.2011.05.007 CrossRefGoogle Scholar
  40. 40.
    Wang HH, Mou J, Ni YH et al (2013) Phase behavior, interaction and properties of acetic acid lignin-containing polyurethane films coupled with aminopropyltriethoxy silane. Express Polym Lett 7:443–455. doi: 10.3144/expresspolymlett.2013.41 CrossRefGoogle Scholar
  41. 41.
    Shao M, Liu Z, Li D et al (2012) Thermal properties of polyurethane films prepared from mixed cellulose, hemicelluloses and lignin. Int J Food Eng 8:1556–3758. doi: 10.1515/1556-3758.1935 CrossRefGoogle Scholar
  42. 42.
    Thring RW, Vanderlaan MN, Griffin SL (1997) Polyurethanes from Alcell lignin. Biomass Bioenerg 13:125–132. doi: 10.1016/S0961-9534(97)00030-5 CrossRefGoogle Scholar
  43. 43.
    Hirose S, Kobashigawa K, Izuta Y, Hatakeyama H (1998) Thermal degradation of polyurethanes containing lignin studied by TG-FTIR. Polym Int 47:247–256. doi: 10.1002/(SICI)1097-0126(199811)47:3<247:AID-PI966>3.0.CO;2-F CrossRefGoogle Scholar
  44. 44.
    Da Silva EAB, Zabkova M, Araújo JD et al (2009) An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Des 87:1276–1292. doi: 10.1016/j.cherd.2009.05.008 CrossRefGoogle Scholar
  45. 45.
    Evtuguin D, Andreolety J, Gandini A (1998) Polyurethanes based on oxygen-organosolv lignin. Eur Polym J 34:1163–1169. doi: 10.1016/S0014-3057(97)00245-0 CrossRefGoogle Scholar
  46. 46.
    Kunio N, Roland M, Anders R, Hatakeyama Knut P, Kringstad A (1991) Mechanical properties of solvolysis lignin-derived polyurethanes. Polym Adv Technol 2:41–47CrossRefGoogle Scholar
  47. 47.
    Nakamura K, Hatakeyama T, Hatakeyama H (1992) Thermal properties of solvolysis lignin-derived polyurethanes. Polym Adv Technol 3:151–155CrossRefGoogle Scholar
  48. 48.
    Chung H, Washburn NR (2012) Improved lignin polyurethane properties with lewis acid treatment. ACS Appl Mater Interfaces 4:2840–2846. doi: 10.1021/am300425x CrossRefGoogle Scholar
  49. 49.
    Lee A, Deng Y (2015) Green polyurethane from lignin and soybean oil through non-isocyanate reactions. Eur Polym J 63:67–73. doi: 10.1016/j.eurpolymj.2014.11.023 CrossRefGoogle Scholar
  50. 50.
    Chahar S, Dastidar MG, Choudhary V, Sharma DK (2004) Synthesis and characterisation of polyurethanes derived from waste black liquor lignin. J Adhes Sci Technol 18:169–179. doi: 10.1163/156856104772759386 CrossRefGoogle Scholar
  51. 51.
    Feldman D, Lacasse M, Beznaczuk LM (1986) Lignin-polymer systems and some applications. Prog Polym Sci 12:271–299. doi: 10.1016/0079-6700(86)90002-X CrossRefGoogle Scholar
  52. 52.
    Griffini G, Passoni V, Suriano R et al (2015) Polyurethane coatings based on chemically unmodified fractionated lignin. ACS Sustain Chem Eng 3:1145–1154. doi: 10.1021/acssuschemeng.5b00073 CrossRefGoogle Scholar
  53. 53.
    Gama NV, Soares B, Freire CSR et al (2015) Bio-based polyurethane foams toward applications beyond thermal insulation. Mater Des 76:77–85. doi: 10.1016/j.matdes.2015.03.032 CrossRefGoogle Scholar
  54. 54.
    Bernardini J, Anguillesi I, Coltelli M-B et al (2015) Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents. Polym Int 64:1235–1244. doi: 10.1002/pi.4905 CrossRefGoogle Scholar
  55. 55.
    Bernardini J, Cinelli P, Anguillesi I et al (2015) Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur Polym J 64:147–156. doi: 10.1016/j.eurpolymj.2014.11.039 CrossRefGoogle Scholar
  56. 56.
    Demharter A (1998) Polyurethane rigid foam, a proven thermal insulating material for applications between +130°C and −196°C. Cryogenics (Guildf) 38:113–117. doi: 10.1016/S0011-2275(97)00120-3 CrossRefGoogle Scholar
  57. 57.
    Zhang Q, Zhang G, Xu J et al (2015) Recent advances on ligin-derived polyurethane polymers. Rev Adv Mater Sci 40:146–154Google Scholar
  58. 58.
    Glasser WG, Hsu OH-H (1975) Polyurethane intermediates and products and methods of producing same from lignin, US Patent 4017474 A1, 15 Aug 1975Google Scholar
  59. 59.
    Santelli TR, Wallace RT (1967) Organic isocyanate-lignin reaction products and process, US Patent 3577358 A, 10 Feb 1967Google Scholar
  60. 60.
    Kurple KR (1996) Lignin based polyols, US Patent 6025452 A, 27 Dec 1996Google Scholar
  61. 61.
    Cateto CAB (2008) Lignin-based polyurethanes: characterisation, synthesis and applications. Dissertation. Universidade do Porto (FEUP)Google Scholar
  62. 62.
    Alma MH, Basturk MA, Digrak M (2003) New polyurethane-type rigid foams from liquified wood powders. J Mater Sci Lett 22:1225–1228. doi: 10.1023/A:1025356702660 CrossRefGoogle Scholar
  63. 63.
    Seo WJ, Park JH, Sung YT et al (2004) Properties of water-blown rigid polyurethane foams with reactivity of raw materials. J Appl Polym Sci 93:2334–2342. doi: 10.1002/app.20717 CrossRefGoogle Scholar
  64. 64.
    Hatakeyama H, Hirogaki A, Matsumura H, Hatakeyama T (2013) Glass transition temperature of polyurethane foams derived from lignin by controlled reaction rate. J Therm Anal Calorim 114:1075–1082. doi: 10.1007/s10973-013-3132-1 CrossRefGoogle Scholar
  65. 65.
    Gao L, Zheng G, Zhou Y et al (2015) Improved mechanical property, thermal performance, flame retardancy and fire behavior of lignin-based rigid polyurethane foam nanocomposite. J Therm Anal Calorim 120:1311–1325. doi: 10.1007/s10973-015-4434-2 CrossRefGoogle Scholar
  66. 66.
    Xing W, Yuan H, Yang H (2013) Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: preparation, thermal stability, fire performance and mechanical properties. J Polym Res 20:1–12. doi: 10.1007/s10965-013-0234-1 CrossRefGoogle Scholar
  67. 67.
    Hyon S, Cha W, Ikada Y (1987) Engineering plastics from lignin II. Hydroxypropyl lignins as components of fire resistant foams. Polym Bull 12:119–126. doi: 10.1007/BF00310794 Google Scholar
  68. 68.
    Vlcek T, Paberza A, Kirpluks M, Cabulis U (2012) Lignin polyol in production of oil based polyurethane elastomers and rigid foams. In: International conference on biobased materials and composites. Lake Balaton, Hungary, pp 14–16Google Scholar
  69. 69.
    Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2009) Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res 48:2583–2589. doi: 10.1021/ie801251r CrossRefGoogle Scholar
  70. 70.
    Cateto C, Barreiro M, Rodrigues A, Belgacem M (2008) Rigid polyurethane foams from lignin based polyols. In: IVth International conference on “Times of. Polymer (TOP) and composites. Ischia, Italy, pp 243–245Google Scholar
  71. 71.
    Yang L, Wang X, Cui Y et al (2014) Modification of renewable resources-lignin-by three chemical methods and its applications to polyurethane foams. Polym Adv Technol 25:1089–1098. doi: 10.1002/pat.3356 CrossRefGoogle Scholar
  72. 72.
    Xue B-L, Wen J-L, Sun R-C (2015) Producing lignin-based polyols through microwave-assisted liquefaction for rigid polyurethane foam production. Materials (Basel) 8:586–599. doi: 10.3390/ma8020586 CrossRefGoogle Scholar
  73. 73.
    Telysheva G, Cabulis U, Arshanitsa A, et al (2013) Lignin polyol modification and synthesis of polyurethane foams. BiocoreGoogle Scholar
  74. 74.
    Faruk O, Sain M, Farnood R et al (2014) Development of lignin and nanocellulose enhanced bio PU foams for automotive parts. J Polym Environ 22:279–288. doi: 10.1007/s10924-013-0631-x CrossRefGoogle Scholar
  75. 75.
    Hatakeyama H, Hatakeyama T (2005) Environmentally compatible hybrid-type polyurethane foams containing saccharide and lignin components. Macromol Symp 224:219–226. doi: 10.1002/masy.200550619 CrossRefGoogle Scholar
  76. 76.
    Li Y, Ragauskas AJ (2012) Ethanol organosolv lignin-based rigid polyurethane foam reinforced with cellulose nanowhiskers. RSC Adv 2:3347–3351. doi: 10.1039/c2ra00646d CrossRefGoogle Scholar
  77. 77.
    Hatakeyema H, Tanamachi N, Matsumura H et al (2005) Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry. Thermochim Acta 431:155–160. doi: 10.1016/j.tca.2005.01.065 CrossRefGoogle Scholar
  78. 78.
    Hatakeyama T, Matsumoto Y, Asano Y, Hatakeyama H (2004) Glass transition of rigid polyurethane foams derived from sodium lignosulfonate mixed with diethylene, triethylene and polyethylene glycols. Thermochim Acta 416:29–33. doi: 10.1016/j.tca.2002.12.002 CrossRefGoogle Scholar
  79. 79.
    Hatakeyama H, Kato N, Nanbo T, Hatakeyama T (2012) Water absorbent polyurethane composites derived from molasses and lignin filled with microcrystalline cellulose. J Mater Sci 47:7254–7261. doi: 10.1007/s10853-012-6674-x CrossRefGoogle Scholar
  80. 80.
    Cateto CA, Barreiro MF, Ottati C et al (2013) Lignin-based rigid polyurethane foams with improved biodegradation. J Cell Plast 50:81–95. doi: 10.1177/0021955X13504774 CrossRefGoogle Scholar
  81. 81.
    Hatakeyama H, Nakayachi A, Hatakeyama T (2005) Thermal and mechanical properties of polyurethane-based geocomposites derived from lignin and molasses. Compos Part A Appl Sci Manuf 36:698–704. doi: 10.1016/j.compositesa.2004.03.022 CrossRefGoogle Scholar
  82. 82.
    Arshanitsa A, Paberza A, Vevere L et al (2014) Two approaches for introduction of wheat straw lignin into rigid polyurethane foams. AIP Conf Proc 1593:388–391. doi: 10.1063/1.4873806 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringUniversity of Western OntarioLondonCanada

Personalised recommendations