Lignin-Based Epoxy Resins

  • Chunbao XuEmail author
  • Fatemeh Ferdosian
Part of the Green Chemistry and Sustainable Technology book series (GCST)


This chapter focuses on the utilization of lignin in the production of epoxy resins. The incorporation methods of lignin in manufacture of epoxy resins can be classified into three categories: (i) physical blending of lignin and epoxy resin, (ii) pre-modification of lignin before epoxidation, and (iii) direct epoxidation of lignin. The presence of lignin in epoxy resin changes the chemistry of the resultant product and hence affects the thermal and mechanical properties of the epoxy resin. Furthermore, the curing kinetics, mechanical and thermal properties of the synthesized lignin-based epoxy resins were compared with the conventional petroleum-based epoxy resins. The results indicated that lignin could be a promising bio-replacement of bisphenol-A in the production of various epoxy resins with acceptable performance.


Lignin-based epoxy resins Physical blending Pre-modification of lignin Direct epoxidation of lignin Thermal and mechanical properties Curing 


  1. 1.
    Yang J (1998) Modifications of epoxy resins with functional hyperbranched poly(acrylene)s, Ph.D. thesis. Virginia Polytechnic Institute and State UniversityGoogle Scholar
  2. 2.
    Acmite Market Intelligence (2014) Market report: Global epoxy resin market. Acmite Market Intelligence, Ratingen, Germany
  3. 3.
    Kroschwitz JI (1991) High performance polymers and composites. Wiley, The University of MichiganGoogle Scholar
  4. 4.
    May C (1988) Epoxy resins: chemistry and technology, 2nd edn. Marcel Derker Inc, New YorkGoogle Scholar
  5. 5.
    Oyanguren PA, Williams RJJ (1992) Analysis of the epoxidation of bisphenol A and phenolic novolacs with epichlorohydrin. Polymer (Guildf) 33:2376–2381CrossRefGoogle Scholar
  6. 6.
    Medjitov DR, Shode LG, Tseitlin GM (1998) Composition of condensation products of bisphenol-A and epichlorohydrin. Polym Bull 40:509–516. doi: 10.1007/s002890050284 CrossRefGoogle Scholar
  7. 7.
    Krol P, Krol B, Dziwinski E (2003) Influence of the synthesis conditions on the properties of low-molecular weight Epoxy resin. Polimery 48:546–556Google Scholar
  8. 8.
    Bhatnagar MS (1996) Epoxy Resin (overview). Polym Mater Encycl (CRC Press)Google Scholar
  9. 9.
    Chanda M, Roy SK (2006) Plastics technology handbook, 4th edn. CRC Press, Boca Raton 3:2233–2238Google Scholar
  10. 10.
    Hamerton I (1996) Recent developments in epoxy resins. RAPRA Technology LtdGoogle Scholar
  11. 11.
    Castan P (1990) Curing agents for Epoxy resin. Three Bond Tech News 1–10Google Scholar
  12. 12.
    Bianchini G (1996) Waterborne and solvent based epoxide and their end user applications. SITA Technology, ChichesterGoogle Scholar
  13. 13.
    Ferdosian F, Ebrahimi M, Jannesari A (2013) Curing kinetics of solid epoxy/DDM/nanoclay: Isoconversional models versus fitting model. Thermochim Acta 568:67–73. doi: 10.1016/j.tca.2013.06.001 CrossRefGoogle Scholar
  14. 14.
    Abdul Khalil HPS, Marliana MM, Issam AM, Bakare IO (2011) Exploring isolated lignin material from oil palm biomass waste in green composites. Mater Des 32:2604–2610CrossRefGoogle Scholar
  15. 15.
    Hirose S, Hatakeyama T, Hatakeyama H (2012) Novel epoxy resins derived from biomass components. Procedia Chem 4:26–33. doi: 10.1016/j.proche.2012.06.004 CrossRefGoogle Scholar
  16. 16.
    Kong X, Xu Z, Guan L, Di M (2014) Study on polyblending epoxy resin adhesive with lignin I-curing temperature. Int J Adhes Adhes 48:75–79CrossRefGoogle Scholar
  17. 17.
    Pascault JP, Williams RJJ (2010) General concepts about epoxy polymers. In: Epoxy Polymers: New Materials and Innovation. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–12Google Scholar
  18. 18.
    Wei N, Via BK, Wang Y et al (2014) Liquefaction and substitution of switchgrass (Panicum virgatum) based bio-oil into epoxy resins. Ind Crops Prod 57:116–123. doi: 10.1016/j.indcrop.2014.03.028 CrossRefGoogle Scholar
  19. 19.
    Komiya G, Imai T, Happoya A et al (2013) Effects of lignin derivatives on cross-link density and dielectric properties in the epoxy-based insulating materials for printed circuit boards. IEEE Trans Compon Packag Manuf Technol 3:1057–1062. doi: 10.1109/TCPMT.2013.2253836 CrossRefGoogle Scholar
  20. 20.
    Honcoop E, McNamee W (2010) Toughening of epoxy with novel bio-based. In: American coatings conference, NC, pp 24–30Google Scholar
  21. 21.
    Koike T (2012) Progress in development of epoxy resin systems based on wood biomass in Japan. Polym Eng Sci 52:701–717. doi: 10.1002/pen CrossRefGoogle Scholar
  22. 22.
    Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788. doi: 10.1039/b703294c CrossRefGoogle Scholar
  23. 23.
    Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7:421–432CrossRefGoogle Scholar
  24. 24.
    Seniha Güner F, Yağcı Y, Tuncer Erciyes A (2006) Polymers from triglyceride oils. Prog Polym Sci 31:633–670. doi: 10.1016/j.progpolymsci.2006.07.001 CrossRefGoogle Scholar
  25. 25.
    Raquez J-M, Deléglise M, Lacrampe M-F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509. doi: 10.1016/j.progpolymsci.2010.01.001 CrossRefGoogle Scholar
  26. 26.
    Lu J, Wool RP (2008) Additive toughening effects on new bio-based thermosetting resins from plant oils. Compos Sci Technol 68:1025–1033. doi: 10.1016/j.compscitech.2007.07.009 CrossRefGoogle Scholar
  27. 27.
    Shah MY, Ahmad S (2012) Waterborne vegetable oil epoxy coatings: preparation and characterization. Prog Org Coatings 75:248–252. doi: 10.1016/j.porgcoat.2012.05.001 CrossRefGoogle Scholar
  28. 28.
    Alpha C, Supagro M, Inge E (2011) Synthesis and properties of biobased epoxy resins. Part 1. Glycidylation of flavonoids by epichlorohydrin. J Polym Sci Part A Polym Chem 49:2261–2270. doi: 10.1002/POLA CrossRefGoogle Scholar
  29. 29.
    Benyahya S, Aouf C, Caillol S et al (2014) Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind Crops Prod 53:296–307. doi: 10.1016/j.indcrop.2013.12.045 CrossRefGoogle Scholar
  30. 30.
    Aouf C, Benyahya S, Esnouf A et al (2014) Tara tannins as phenolic precursors of thermosetting epoxy resins. Eur Polym J 55:186–198. doi: 10.1016/j.eurpolymj.2014.03.034 CrossRefGoogle Scholar
  31. 31.
    Liu XQ, Huang W, Jiang YH et al (2012) Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polym Lett 6:293–298. doi: 10.3144/expresspolymlett.2012.32 CrossRefGoogle Scholar
  32. 32.
    Huang K, Zhang J, Li M et al (2013) Exploration of the complementary properties of biobased epoxies derived from rosin diacid and dimer fatty acid for balanced performance. Ind Crops Prod 49:497–506. doi: 10.1016/j.indcrop.2013.05.024 CrossRefGoogle Scholar
  33. 33.
    Wang H, Liu B, Liu X et al (2008) Synthesis of biobased epoxy and curing agents using rosin and the study of cure reactions. Green Chem 10:1190–1196. doi: 10.1039/b803295e CrossRefGoogle Scholar
  34. 34.
    Kuo P-Y, Sain M, Yan N (2014) Synthesis and characterization of an extractive-based bio-epoxy resin from beetle infested Pinus contorta bark. Green Chem 16:3483–3493. doi: 10.1039/c4gc00459k CrossRefGoogle Scholar
  35. 35.
    Kishi H, Fujita A, Miyazaki H et al (2006) Synthesis of wood-based epoxy resins and their mechanical and adhesive properties. J Appl Polym Sci 102:2285–2292. doi: 10.1002/app.24433 CrossRefGoogle Scholar
  36. 36.
    Nakamura Y, Sawada T, Kuno K, Nakamoto Y (2001) Resinification of woody lignin and its characteristics on safety and biodegradation. J Chem Eng Japan 34:1309–1312CrossRefGoogle Scholar
  37. 37.
    Kishi H, Fujita A (2008) Wood-based epoxy resins and the ramie fiber reinforced composites. Environ Eng Manag J 7:517–523Google Scholar
  38. 38.
    Hofmann K, Glasser WG (1993) Engineering plastics from lignin. 21.1 Synthesis and properties of epoxidized lignin-poly (Propylene oxide) copolymers. J Wood Chem Technol 13:73–95. doi: 10.1080/02773819308020508 CrossRefGoogle Scholar
  39. 39.
    Nonaka Y, Tomita B, Hatano Y (1997) Synthesis of lignin/epoxy resins in aqueous systems and their properties. Holzforschung 51:183–187. doi: 10.1515/hfsg.1997.51.2.183 CrossRefGoogle Scholar
  40. 40.
    Park S-J, Jin F-L, Lee J-R (2004) Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol Chem Phys 205:2048–2054. doi: 10.1002/macp.200400214 CrossRefGoogle Scholar
  41. 41.
    Czub P (2006) Application of modified natural oils as reactive diluents for epoxy resins. Macromol Symp 242:60–64. doi: 10.1002/masy.200651010 CrossRefGoogle Scholar
  42. 42.
    Jin F-L, Park S-J (2008) Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer. Mater Sci Eng A 478:402–405. doi: 10.1016/j.msea.2007.05.053 CrossRefGoogle Scholar
  43. 43.
    Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005) Biobased epoxy/layered silicate nanocomposites: thermophysical properties and fracture behavior evaluation. J Polym Environ 13:87–96. doi: 10.1007/s10924-005-2940-1 CrossRefGoogle Scholar
  44. 44.
    Ma S, Liu X, Jiang Y et al (2013) Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem 15:245–254. doi: 10.1039/c2gc36715g CrossRefGoogle Scholar
  45. 45.
    Wang M, Leitch M, Xu CC (2009) Synthesis of phenol–formaldehyde resol resins using organosolv pine lignins. Eur Polym J 45:3380–3388CrossRefGoogle Scholar
  46. 46.
    Simionescu CI, Cazacu G, Macoveanu MM (1987) Lignin-epoxy resins. II Physical and chemical characterization. Cellul Chem Technol 21:525–534Google Scholar
  47. 47.
    Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2011) Kinetic study of the formation of lignin-based polyurethanes in bulk. React Funct Polym 71:863–869. doi: 10.1016/j.reactfunctpolym.2011.05.007 CrossRefGoogle Scholar
  48. 48.
    Cateto CA, Barreiro MF, Rodrigues AE (2008) Monitoring of lignin-based polyurethane synthesis by FTIR-ATR. Ind Crops Prod 27:168–174. doi: 10.1016/j.indcrop.2007.07.018 CrossRefGoogle Scholar
  49. 49.
    Bonini C, D’Auria M, Emanuele L et al (2005) Polyurethanes and polyesters from lignin. J Appl Polym Sci 98:1451–1456. doi: 10.1002/app.22277 CrossRefGoogle Scholar
  50. 50.
    Evtugin DV, Gandini A (1996) Polyesters based on oxygen-organosolv lignin. Acta Polym 47:344–350. doi: 10.1002/actp.1996.010470805 CrossRefGoogle Scholar
  51. 51.
    Pan H, Sun G, Zhao T, Wang G (2014) Thermal properties of epoxy resins crosslinked by an aminated lignin. Polym Eng Sci 1–9. doi: 10.1002/pen.23960
  52. 52.
    Simionescu CI, Rusan V, Macoveanu MM et al (1993) Lignin/epoxy composites. Compos Sci Technol 48:317–323CrossRefGoogle Scholar
  53. 53.
    Holsopple DB, Kurple WW, Kurple WM, Kurple KR (1981) Method of making epoxide-lignin resins, US Patent 4265809, 5 May 1981Google Scholar
  54. 54.
    Delmas G-H, Benjelloun-Mlayah B, Le Bigot Y, Delmas M (2013) BioligninTM based epoxy resins. J Appl Polym Sci 127:1863–1872. doi: 10.1002/app.37921 CrossRefGoogle Scholar
  55. 55.
    El Mansouri N-E, Yuan Q, Huang F (2011) Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. Bioresour Technol 6:2647–2662Google Scholar
  56. 56.
    Hirose S, Hatakeyama H (2000) Thermal properties of epoxy resins from lignin and lignin-related phenols. Mem Fukui Univ Technol 30:255–262Google Scholar
  57. 57.
    El Mansouri N-E, Yuan Q, Huang F (2011) Synthesis and characterization of kraft lignin- based epoxy resins. BioResources 6:2647–2662Google Scholar
  58. 58.
    Zhao B, Chen G, Liu YU et al (2001) Synthesis of lignin base epoxy resin and its characterization. J Mater Sci Lett 20:859–862CrossRefGoogle Scholar
  59. 59.
    Malutan T, Nicu R, Popa VI (2008) Lignin modification by epoxidation. BioResources 3:1371–1376Google Scholar
  60. 60.
    Engelmann G, Ganster J (2014) Bio-based epoxy resins with low molecular weight kraft lignin and pyrogallol. Holzforschung 68:435–446. doi: 10.1515/hf-2013-0023 CrossRefGoogle Scholar
  61. 61.
    Pan H, Sun G, Zhao T (2013) Synthesis and characterization of aminated lignin. Int J Biol Macromol 59:221–226. doi: 10.1016/j.ijbiomac.2013.04.049 CrossRefGoogle Scholar
  62. 62.
    Hirose S, Hatakeyama T, Hatakeyama H (2003) Synthesis and thermal properties of epoxy resins from ester-carboxylic acid derivative of alcoholysis lignin. Macromol Symp 197:157–170. doi: 10.1002/masy.200350715 CrossRefGoogle Scholar
  63. 63.
    Hirose S, Hatakeyama T, Hatakeyama H (2005) Glass transition and thermal decomposition of epoxy resins from the carboxylic acid system consisting of ester-carboxylic acid derivatives of alcoholysis lignin and ethylene glycol with various dicarboxylic acids. Thermochim Acta 431:76–80. doi: 10.1016/j.tca.2005.01.043 CrossRefGoogle Scholar
  64. 64.
    Simionescu CI, Rusan V, Turta K et al (1993) Synthesis and characterization of some iron-lignosulfonate-based lignin-epoxy resins. Cellul Chem Technol 27:627–644Google Scholar
  65. 65.
    Huo S-P, Wu G-M, Chen J et al (2014) Curing kinetics of lignin and cardanol based novolac epoxy resin with methyl tetrahydrophthalic anhydride. Thermochim Acta 587:18–23. doi: 10.1016/j.tca.2014.03.015 CrossRefGoogle Scholar
  66. 66.
    Ferdosian F, Yuan Z, Anderson M, Xu CC (2012) Chemically modified lignin through epoxidation and its thermal properties. J-FOR 2:11–15Google Scholar
  67. 67.
    Ferdosian F, Yuan Z, Anderson M, Xu CC (2014) Synthesis of lignin-based epoxy resins: optimization of reaction parameters using response surface methodology. RSC Adv 4:31745–31753. doi: 10.1039/C4RA03978E CrossRefGoogle Scholar
  68. 68.
    Ferdosian F, Yuan Z, Anderson M, Xu CC (2015) Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: curing kinetics and thermal properties. Thermochim Acta 618:48–55. doi: 10.1016/j.tca.2015.09.012 CrossRefGoogle Scholar
  69. 69.
    Sasaki C, Wanaka M, Takagi H et al (2013) Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Ind Crops Prod 43:757–761. doi: 10.1016/j.indcrop.2012.08.018 CrossRefGoogle Scholar
  70. 70.
    Singh A, Yadav K, Kumar Sen A (2012) Sal (Shorea Robusta) leaves lignin epoxidation and its use in epoxy based coatings. Am J Polym Sci 2:14–18. doi: 10.5923/j.ajps.20120201.03 CrossRefGoogle Scholar
  71. 71.
    Sun G, Sun H, Liu Y et al (2007) Comparative study on the curing kinetics and mechanism of a lignin-based-epoxy/anhydride resin system. Polymer (Guildf) 48:330–337. doi: 10.1016/j.polymer.2006.10.047 CrossRefGoogle Scholar
  72. 72.
    Sun H, Sun G, Lv H et al (2007) DSC study on the effect of cure reagents on the lignin base epoxy cure reaction. J Appl Polym Sci 105:2332–2338. doi: 10.1002/app.26196 CrossRefGoogle Scholar
  73. 73.
    Panagiotis I, Karkanas I, Partridge K (2000) Cure modeling and monitoring of epoxy/amine resin systems. II. Network formation and chemoviscosity modeling. J Appl Polym Sci 77:2178–2188CrossRefGoogle Scholar
  74. 74.
    Brnardic I, Ivankovic M, Ivankovic H, Mencer HJ (2006) Isothermal and nonisothermal cure kinetics of an epoxy/poly(oxypropylene)diamine/octadecylammonium modified montmorillonite system. J Appl Polym Sci 100:1765–1771. doi: 10.1002/app.23080 CrossRefGoogle Scholar
  75. 75.
    Weibing X, Pingsheng H, Dazhu C (2003) Cure behavior of epoxy resin/montmorillonite/imidazole nanocomposite by dynamic torsional vibration method. Eur Polym J 39:617–625. doi: 10.1016/S0014-3057(02)00270-7 CrossRefGoogle Scholar
  76. 76.
    Chen D, He P (2004) Monitoring the curing process of epoxy resin nanocomposites based on organo-montmorillonite—a new application of resin curemeter. Compos Sci Technol 64:2501–2507. doi: 10.1016/j.compscitech.2004.05.008 CrossRefGoogle Scholar
  77. 77.
    Chen DZ, He PS, Pan LJ (2003) Cure kinetics of epoxy-based nanocomposites analyzed by Avrami theory of phase change. Polym Test 22:689–697. doi: 10.1016/S0142-9418(03)00002-3 CrossRefGoogle Scholar
  78. 78.
    Lacorte T, Lipinska M, Carrasco F, Page P (2008) Study of curing of layered silicate/trifunctional epoxy nanocomposites by means of FTIR Spectroscopy. J Appl Polym Sci 108:2107–2115. doi: 10.1002/app CrossRefGoogle Scholar
  79. 79.
    Halley PJ, Mackay ME (1996) Chermorheology of thermosets—an overview. Polym Eng Sci 36:593–609CrossRefGoogle Scholar
  80. 80.
    Chen J, Hojjati M (2007) Microdielectric analysis and curing kinetics of an epoxy resin system. Polym Eng Sci 47:150–158. doi: 10.1002/pen.20687 CrossRefGoogle Scholar
  81. 81.
    Lee H, Kenny J, Mays J (2006) Dynamics in polymer—silicate nanocomposites as studied by dielectric relaxation spectroscopy and dynamic mechanical spectroscopy. Macrolecules 39:2172–2182Google Scholar
  82. 82.
    Yin Q, Yang W, Sun C, Di M (2012) Preparation and properties of lignin-epoxy resin composite. BioResources 7:5737–5748CrossRefGoogle Scholar
  83. 83.
    Liu W, Zhou R, Goh HLS et al (2014) From waste to functional additive: toughening epoxy resin with lignin. ACS Appl Mater Interfaces 6:5810–5817. doi: 10.1021/am500642n CrossRefGoogle Scholar
  84. 84.
    Wang Q, He T, Xia P et al (1997) Cure processing modeling and cure cycle simulation of epoxy-terminated poly(phenylene ether ketone). I. DSC characterization of curing reaction. J Appl Polym Sci 66:789–797. doi: 10.1002/(SICI)1097-4628(19971024)66:4<789:AID-APP19>3.0.CO;2-M CrossRefGoogle Scholar
  85. 85.
    Wang Q, He T, Xia P et al (1997) Cure processing modeling and cure cycle simulation of epoxy-terminated poly (phenylene ether ketone). III. Determination of the time of pressure application. J Appl Polym Sci 66:1745–1750CrossRefGoogle Scholar
  86. 86.
    Cai H, Li P, Sui G et al (2008) Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC. Thermochim Acta 473:101–105. doi: 10.1016/j.tca.2008.04.012 CrossRefGoogle Scholar
  87. 87.
    Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276CrossRefGoogle Scholar
  88. 88.
    Dufresne A, Thomas S, Pothan LA (2013) Biopolymer nanocomposites: processing, properties and applications. Wiley, Hoboken, New JerseyGoogle Scholar
  89. 89.
    Hu J, Xiao R, Shen D, Zhang H (2013) Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy. Bioresour Technol 128:633–639. doi: 10.1016/j.biortech.2012.10.148 CrossRefGoogle Scholar
  90. 90.
    Benítez-Guerrero M, López-Beceiro J, Sánchez-Jiménez PE, Pascual-Cosp J (2014) Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: cellulose, xylan and lignin. TG-FTIR analysis of volatile products. Thermochim Acta 581:70–86. doi: 10.1016/j.tca.2014.02.013 CrossRefGoogle Scholar
  91. 91.
    Zhang M, Resende FLP, Moutsoglou A, Raynie DE (2012) Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR. J Anal Appl Pyrolysis 98:65–71. doi: 10.1016/j.jaap.2012.05.009 CrossRefGoogle Scholar
  92. 92.
    Sahoo S, Seydibeyoğlu MÖ, Mohanty AK, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenerg 35:4230–4237. doi: 10.1016/j.biombioe.2011.07.009 CrossRefGoogle Scholar
  93. 93.
    Czégény Z, Jakab E, Blazsó M (2013) Pyrolysis of wood, cellulose, lignin–brominated epoxy oligomer flame retardant mixtures. J Anal Appl Pyrolysis 103:52–59. doi: 10.1016/j.jaap.2012.11.002 CrossRefGoogle Scholar
  94. 94.
    Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cellul Chem Technol 44:353–363Google Scholar
  95. 95.
    Gašparoviè L, Labovský J, Markoš J (2012) Calculation of kinetic parameters of the thermal decomposition of wood by Distributed Activation Energy Model (DAEM). Chem Biochem Eng Q 26:45–53Google Scholar
  96. 96.
    Ma Z, Chen D, Gu J et al (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manag 89:251–259. doi: 10.1016/j.enconman.2014.09.074 CrossRefGoogle Scholar
  97. 97.
    Beis SH, Mukkamala S, Hill N et al (2010) Fast pyrolysis of lignins. BioResources 5:1408–1424Google Scholar
  98. 98.
    Petreus O, Cazacu G, Vasile C (2008) Spectroscopic and thermal characterization of a new phosphorus containing lignin-epoxy resin. In: COST E41 Meet. Åbo, Finland, pp 71–72Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringUniversity of Western OntarioLondonCanada

Personalised recommendations