Advertisement

Lignin-Based Phenol–Formaldehyde (LPF) Resins/Adhesives

  • Chunbao XuEmail author
  • Fatemeh Ferdosian
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

This chapter presents a comprehensive overview on the synthesis of lignin-based phenol–formaldehyde (LPF) resin and its characteristics for using it as wood adhesives. Lignin has a phenolic structure with high hydrophobicity that makes it as a promising bioreplacement of phenol in the synthesis of PF resins. However, lignin has low reactivity toward formaldehyde compared with phenol due to its high molecular weight and steric hindering. To improve the reactivity of lignin, various chemical modifications such as methylolation, demethylation, phenolation, sulphonation, hydrolytic depolymerization, and reductive depolymerization were conducted on lignin before incorporation in the synthesis of lignin-based phenol–formaldehyde resins. Effects of some factors including the type of lignin, substitution ratio, and reaction conditions on the performance of the obtained LPF resins were discussed in detail.

Keywords

Lignin-based phenol–formaldehyde (LPF) resins Reactivity of lignin Chemical modifications Methylolation Demethylation Phenolation Sulphonation Hydrolytic depolymerization Reductive depolymerization 

References

  1. 1.
    PR Newswire Europe (2014) Phenolic resins market (Resol, Novolac and Others) for wood-adhesives, molding compounds, laminates, insulation and other applications: global industry analysis, size, share, growth, trends and forecast, 2013–2019Google Scholar
  2. 2.
    Moubarik A, Grimi N, Boussetta N, Pizzi A (2013) Isolation and characterization of lignin from Moroccan sugar cane bagasse: production of lignin-phenol-formaldehyde wood adhesive. Ind Crops Prod 45:296–302. doi: 10.1016/j.indcrop.2012.12.040 CrossRefGoogle Scholar
  3. 3.
    Zhang W, Ma Y, Wang C et al (2013) Preparation and properties of lignin-phenol-formaldehyde resins based on different biorefinery residues of agricultural biomass. Ind Crops Prod 43:326–333. doi: 10.1016/j.indcrop.2012.07.037 CrossRefGoogle Scholar
  4. 4.
    Jin Y, Cheng X, Zheng Z (2010) Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresour Technol 101:2046–2048. doi: 10.1016/j.biortech.2009.09.085 CrossRefGoogle Scholar
  5. 5.
    Zhang W, Ma Y, Xu Y et al (2013) Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin adhesive. Int J Adhes Adhes 40:11–18. doi: 10.1016/j.ijadhadh.2012.08.004 CrossRefGoogle Scholar
  6. 6.
    Yang S, Zhang Y, Yuan T-Q, Sun R-C (2015) Lignin-phenol-formaldehyde resin adhesives prepared with biorefinery technical lignins. J Appl Polym Sci 132:1–8. doi: 10.1002/app.42493 Google Scholar
  7. 7.
    Qiao W, Li S, Guo G et al (2014) Synthesis and characterization of phenol-formaldehyde resin using enzymatic hydrolysis lignin. J Ind Eng Chem 21:1417–1422. doi: 10.1016/j.jiec.2014.06.016 CrossRefGoogle Scholar
  8. 8.
    Çetin NS, Özmen N (2002) Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: I. Organosolv lignin modified resins. Int J Adhes Adhes 22:477–480. doi: 10.1016/S0143-7496(02)00058-1 CrossRefGoogle Scholar
  9. 9.
    Khan MA, Ashraf SM (2005) Development and characterization of a lignin—phenol—formaldehyde wood adhesive using coffee bean shell. J Adhes Sci Technol 19:493–509CrossRefGoogle Scholar
  10. 10.
    Del Saz-Orozco B, Alonso MV, Oliet M et al (2015) Lignin particle- and wood flour-reinforced phenolic foams: Friability, thermal stability and effect of hygrothermal aging on mechanical properties and morphology. Compos Part B Eng 80:154–161. doi: 10.1016/j.compositesb.2015.05.043 CrossRefGoogle Scholar
  11. 11.
    Grishechko LI, Amaral-Labat G, Szczurek A et al (2013) Lignin-phenol-formaldehyde aerogels and cryogels. Microporous Mesoporous Mater 168:19–29. doi: 10.1016/j.micromeso.2012.09.024 CrossRefGoogle Scholar
  12. 12.
    Tejado A, Kortaberria G, Labidi J et al (2008) Isoconversional kinetic analysis of novolac-type lignophenolic resins cure. Thermochim Acta 471:80–85. doi: 10.1016/j.tca.2008.03.005 CrossRefGoogle Scholar
  13. 13.
    Effendi A, Gerhauser H, Bridgwater AV (2008) Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sust Energ Rev 12:2092–2116CrossRefGoogle Scholar
  14. 14.
    Vfizquez G, Gonzfilez J, Freire S, Antorrena G (1997) Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins. Bioresour Technol 60:191–198CrossRefGoogle Scholar
  15. 15.
    Wang M, Leitch M, Xu CC (2009) Synthesis of phenol–formaldehyde resol resins using organosolv pine lignins. Eur Polym J 45:3380–3388CrossRefGoogle Scholar
  16. 16.
    Tejado A, Peña C, Labidi J et al (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98:1655–1663. doi: 10.1016/j.biortech.2006.05.042 CrossRefGoogle Scholar
  17. 17.
    Benar P, Gonçalves AR, Mandelli D, Schuchardt U (1999) Eucalyptus organosolv lignins: study of the hydroxymethylation and use in resols. Bioresour Technol 68:11–16. doi: 10.1016/S0960-8524(98)00076-5 CrossRefGoogle Scholar
  18. 18.
    Matsushita Y, Wada S, Fukushima K, Yasuda S (2006) Surface characteristics of phenol-formaldehyde-lignin resin determined by contact angle measurement and inverse gas chromatography. Ind Crops Prod 23:115–121. doi: 10.1016/j.indcrop.2005.04.004 CrossRefGoogle Scholar
  19. 19.
    Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101CrossRefGoogle Scholar
  20. 20.
    Guo Z, Liu Z, Ye L et al (2015) The production of lignin-phenol-formaldehyde resin derived carbon fibers stabilized by BN preceramic polymer. Mater Lett 142:49–51. doi: 10.1016/j.matlet.2014.11.068 CrossRefGoogle Scholar
  21. 21.
    Olivares M, Aceituno H, Neiman G et al (1995) lignin-modified phenolic adhesives for bonding radiata pine plywood. For Prod J 45:63–67. doi: 10.1108/17506200710779521 Google Scholar
  22. 22.
    Ma Y, Zhao X, Chen X, Wang Z (2011) An approach to improve the application of acid-insoluble lignin from rice hull in phenol-formaldehyde resin. Colloids Surfaces A Physicochem Eng Asp 377:284–289. doi: 10.1016/j.colsurfa.2011.01.006 CrossRefGoogle Scholar
  23. 23.
    Gonçalves AR, Benar P (2001) Hydroxymethylation and oxidation of organosolv lignins and utilization of the products. Bioresour Technol 79:103–111. doi: 10.1016/S0960-8524(01)00056-6 CrossRefGoogle Scholar
  24. 24.
    Olivares M, Guzmán JA, Natho A, Saavedra A (1988) Kraft lignin utilization in adhesives. Wood Sci Technol 22:157–165. doi: 10.1007/BF00355851 CrossRefGoogle Scholar
  25. 25.
    Zheng Z, Huang Y, Zou J, Zhang H (2008) Phenolation of using sulfuric acid as a catalyst and application to PF resin adhesives. J Biotechnol 136:S410–S411. doi: 10.1016/j.jbiotec.2008.07.949 Google Scholar
  26. 26.
    Cheng S, Yuan Z, Leitch M et al (2013) Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio. Ind Crops Prod 44:315–322. doi: 10.1016/j.indcrop.2012.10.033 CrossRefGoogle Scholar
  27. 27.
    Beis SH, Mukkamala S, Hill N et al (2010) Fast pyrolysis of lignins. BioResources 5:1408–1424Google Scholar
  28. 28.
    Zhang M, Resende FLP, Moutsoglou A, Raynie DE (2012) Pyrolysis of lignin extracted from prairie cordgrass, aspen, and kraft lignin by Py-GC/MS and TGA/FTIR. J Anal Appl Pyrolysis 98:65–71. doi: 10.1016/j.jaap.2012.05.009 CrossRefGoogle Scholar
  29. 29.
    Fang Z, Sato T, Smith RL Jr et al (2008) Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour Technol 99:3424–3430CrossRefGoogle Scholar
  30. 30.
    Siddiqui H (2013) Production of lignin-based phenolic resin using de-polymerized kraft lignin and process optimization. M.Sc. thesis, The University of Western OntarioGoogle Scholar
  31. 31.
    Sales FG, Maranhão LCA, Filho NML, Abreu CAM (2007) Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Chem Eng Sci 62:5386–5391. doi: 10.1016/j.ces.2007.02.018 CrossRefGoogle Scholar
  32. 32.
    Villar JC, Caperos A, García-Ochoa F (2001) Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol 35:245–255. doi: 10.1007/s002260100089 CrossRefGoogle Scholar
  33. 33.
    Voitl T, Von Rohr PR (2010) Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Ind Eng Chem Res 49:520–525. doi: 10.1021/ie901293p CrossRefGoogle Scholar
  34. 34.
    Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41. doi: 10.1002/ceat.201000270 CrossRefGoogle Scholar
  35. 35.
    Alonso MV, Oliet M, Pérez JM et al (2004) Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochim Acta 419:161–167. doi: 10.1016/j.tca.2004.02.004 CrossRefGoogle Scholar
  36. 36.
    Alonso MV, Oliet M, García J et al (2006) Gelation and isoconversional kinetic analysis of lignin-phenol-formaldehyde resol resins cure. Chem Eng J 122:159–166. doi: 10.1016/j.cej.2006.06.008 CrossRefGoogle Scholar
  37. 37.
    Akhtar T, Lutfullah G, Ullah Z (2011) Ligonsulfonate-phenolformaldehyrde adhesive: a potenstial binder for wood panel industries. J Chem Soc Pakistan 33:535–538Google Scholar
  38. 38.
    Lee W-JL, Chang K-C, Tseng I-M (2012) Properties of phenol-formaldehyde resins prepared from phenol-liquefied lignin. J Appl Polym Sci 124:4782–4788Google Scholar
  39. 39.
    Turunen M, Alvila L, Pakkanen TT, Rainio J (2003) Modification of phenol—formaldehyde resol resins by lignin, starch, and urea. J Appl Polym Sci 88:582–588. doi: 10.1002/app.11776 CrossRefGoogle Scholar
  40. 40.
    Domínguez JC, Oliet M, Alonso MV et al (2013) Structural, thermal and rheological behavior of a bio-based phenolic resin in relation to a commercial resol resin. Ind Crops Prod 42:308–314. doi: 10.1016/j.indcrop.2012.06.004 CrossRefGoogle Scholar
  41. 41.
    Pérez JM, Oliet M, Alonso MV, Rodríguez F (2009) Cure kinetics of lignin—novolac resins studied by isoconversional methods. Thermochim Acta 487:39–42CrossRefGoogle Scholar
  42. 42.
    Donmez Cavdar A, Kalaycioglu H, Hiziroglu S (2008) Some of the properties of oriented strandboard manufactured using kraft lignin phenolic resin. J Mater Process Technol 202:559–563. doi: 10.1016/j.jmatprotec.2007.10.039 CrossRefGoogle Scholar
  43. 43.
    Klasnja B, Kopitovic S (1992) Lignin-phenol-formaldehyde resins as adhesive in the production of plywood. Holz Roh-Werkst 50:282–285CrossRefGoogle Scholar
  44. 44.
    Danielson B, Simonson R (1998) Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. J Adhes Sci Technol 12:923–939. doi: 10.1163/156856198X00542 CrossRefGoogle Scholar
  45. 45.
    Kouisni L, Fang Y, Paleologou M et al (2011) Kraft lignin recovery and its use in the preparation of lignin-based phenol formaldehyde resins for plywood. Cellul Chem Technol 45:515–520Google Scholar
  46. 46.
    Yang S, Wen J, Yuan T, Sun R (2014) Characterization and phenolation of biorefinery technical lignins for lignin—phenol—formaldehyde resin adhesive synthesis. RSC Adv 4:57996–58004. doi: 10.1039/C4RA09595B CrossRefGoogle Scholar
  47. 47.
    Tejado A, Kortaberria G, Peña C et al (2008) Isocyanate curing of novolac-type ligno-phenol-formaldehyde resins. Ind Crops Prod 27:208–213. doi: 10.1016/j.indcrop.2007.07.009 CrossRefGoogle Scholar
  48. 48.
    Çetin NS, Özmen N (2003) Studies on lignin-based adhesives for particleboard panels. Turkish J Agric For 27:183–189Google Scholar
  49. 49.
    Khan MA, Ashraf SM, Malhotra VP (2004) Development and characterization of a wood adhesive using bagasse lignin. Int J Adhes Adhes 24:485–493. doi: 10.1016/j.ijadhadh.2004.01.003 CrossRefGoogle Scholar
  50. 50.
    Vazquez G, Antorrena G, González-Álvarez J, Mayor J (1995) Lignin-phenol-formaldehyde adhesives for exterior grade plywoods. Bioresour Technol 51:187–192CrossRefGoogle Scholar
  51. 51.
    Vázquez G, Rodríguez-Bona C, Freire S et al (1999) Acetosolv pine lignin as copolymer in resins for manufacture of exterior grade plywoods. Bioresour Technol 70:209–214. doi: 10.1016/S0960-8524(99)00020-6 CrossRefGoogle Scholar
  52. 52.
    Jing Z, Lihong H, Bingchuan L et al (2015) Preparation and characterization of novolac phenol—formaldehyde resins with enzymatic hydrolysis lignin. J Taiwan Inst Chem Eng 54:178–182. doi: 10.1016/j.jtice.2015.03.023 CrossRefGoogle Scholar
  53. 53.
    Nada A-AMA, Abou-Youssef H, El-Gohary SEM (2003) Phenol formaldehyde resin modification with lignin. Polym Plast Technol Eng 42:689–699. doi: 10.1081/PPT-120023103 CrossRefGoogle Scholar
  54. 54.
    Khan MA, Ashraf SM (2006) Development and characterization of groundnut shell lignin modified phenol formaldehyde wood adhesive. Indian J Chem Technol 13:347–352Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringUniversity of Western OntarioLondonCanada

Personalised recommendations