Utilizations of Lignin for Polymer Reinforcement and Carbon Fibers

  • Chunbao XuEmail author
  • Fatemeh Ferdosian
Part of the Green Chemistry and Sustainable Technology book series (GCST)


This chapter describes the performance of lignin as a reinforcement filler for thermoplastic polymers as well as its potential as a precursor for production of carbon fibers. Literature studies show that lignin could improve the antioxidant, thermal stability, mechanical performance, UV stability, and biodegradability of various thermoplastic polymers such as natural rubber, PE, PP, SBR, PVC, and polystyrene. However, the polarity and relatively large particle size of lignin could limit its miscibility with the polymeric matrix. To overcome this challenge, it is required to modify lignin to reduce its polarity before compounding with thermoplastic polymers. In addition, lignin is a renewable source of carbon and can be utilized into carbon fibers. There are three categories of carbon fibers that incorporate lignin in the manufacturing processes: (1) carbon fibers from raw lignin without any further modification, (2) carbon fibers from physical lignin/polymer blends, and (3) carbon fibers from modified lignin.


Lignin Reinforcement filler Precursor Carbon fibers Thermoplastic polymers Polarity Miscibility Modified lignin 


  1. 1.
    Bahl K, Jana SC (2014) Surface modification of lignosulfonates for reinforcement of styrene-butadiene rubber compounds. J Appl Polym Sci 131:1–9. doi: 10.1002/app.40123 CrossRefGoogle Scholar
  2. 2.
    Pouteau C, Dole P, Cathala B et al (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81:9–18. doi: 10.1016/S0141-3910(03)00057-0 CrossRefGoogle Scholar
  3. 3.
    Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092. doi: 10.1021/sc500087z CrossRefGoogle Scholar
  4. 4.
    Gosselink RJA, Snijder MHB, Kranenbarg A et al (2004) Characterisation and application of NovaFiber lignin. Ind Crops Prod 20:191–203. doi: 10.1016/j.indcrop.2004.04.021 CrossRefGoogle Scholar
  5. 5.
    Gregorová A, Cibulková Z, Košíková B, Šimon P (2005) Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym Degrad Stab 89:553–558. doi: 10.1016/j.polymdegradstab.2005.02.007 CrossRefGoogle Scholar
  6. 6.
    Gregorová A, Košíková B, Moravčík R (2006) Stabilization effect of lignin in natural rubber. Polym Degrad Stab 91:229–233. doi: 10.1016/j.polymdegradstab.2005.05.009 CrossRefGoogle Scholar
  7. 7.
    Kosikova B, Gregorova A, Osvald A, Krajcovicova J (2007) Role of lignin filler in stabilization of natural rubber-based composites. J Appl Polym Sci 103:1226–1231. doi: 10.1002/app CrossRefGoogle Scholar
  8. 8.
    Keilen JJ, Dougherty WK, Cook WR (1952) Lignin-reinforced nitrile, neoprene, and natural rubbers. Ind Eng Chem 44:163–167CrossRefGoogle Scholar
  9. 9.
    Griffith TR, MacGregor DW (1953) Aids in vulcanization of lignin-natural rubber coprecipitates. Lead, copper, and bismuth oxides. Rubber Chem Technol 26:716–730. doi: 10.5254/1.3539854 CrossRefGoogle Scholar
  10. 10.
    Li Y, Mlynar J, Sarkanen S (1997) The first 85% kraft lignin-based thermoplastics. J Polym Sci Part B 35:1899–1910. doi: 10.1002/(sici)1099-0488(19970915)35:12<1899:aid-polb5>;2-l CrossRefGoogle Scholar
  11. 11.
    Canetti M, Bertini F (2009) Influence of the lignin on thermal degradation and melting behaviour of Poly(ethylene terephthalate) based composites. E-Polymers 49:1–10Google Scholar
  12. 12.
    Liu F, Xu K, Chen M, Cao D (2011) The roles of polyacrylate in poly(vinyl chloride)-lignin composites. Polym Compos 32:1399–1407. doi: 10.1002/pc.21163 CrossRefGoogle Scholar
  13. 13.
    Wang J, Yao K, Korich AL et al (2011) Combining renewable gum rosin and lignin: towards hydrophobic polymer composites by controlled polymerization. J Polym Sci, Part A: Polym Chem 49:3728–3738. doi: 10.1002/pola.24809 CrossRefGoogle Scholar
  14. 14.
    Mikulasova M, Kosikova B, Alexy P et al (2001) Effect of blending lignin biopolymer on the biodegradability of polyolefin plastics. World J Microbiol Biotechnol 17:601–607CrossRefGoogle Scholar
  15. 15.
    Camargo FA, Innocentini-Mei LH, Lemes AP et al (2012) Processing and characterization of composites of poly(3-hydroxybutyrate-co-hydroxyvalerate) and lignin from sugar cane bagasse. J Compos Mater 46:417–425. doi: 10.1177/0021998311418389 CrossRefGoogle Scholar
  16. 16.
    Bahl K, Miyoshi T, Jana SC (2014) Hybrid fillers of lignin and carbon black for lowering of viscoelastic loss in rubber compounds. Polymer (Guildf) 55:3825–3835. doi: 10.1016/j.polymer.2014.06.061 CrossRefGoogle Scholar
  17. 17.
    Pouteau C, Baumberger S, Cathala B, Dole P (2004) Lignin–polymer blends: evaluation of compatibility by image analysis. C R Biol 327:935–943CrossRefGoogle Scholar
  18. 18.
    Teramoto Y, Lee S-H, Endo T (2012) Molecular composite of lignin: Miscibility and complex formation of organosolv lignin and its acetates with synthetic polymers containing vinyl pyrrolidone and/or vinyl acetate units. J Appl Polym Sci 125:2063–2070. doi: 10.1002/app CrossRefGoogle Scholar
  19. 19.
    Sailaja RRN, Deepthi MV (2010) Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater Des 31:4369–4379. doi: 10.1016/j.matdes.2010.03.046 CrossRefGoogle Scholar
  20. 20.
    Rosu L, Cascaval CN, Rosu D (2009) Effect of UV radiation on some polymeric networks based on vinyl ester resin and modified lignin. Polym Test 28:296–300. doi: 10.1016/j.polymertesting.2009.01.004 CrossRefGoogle Scholar
  21. 21.
    Chung YL, Olsson JV, Li RJ et al (2013) A renewable lignin-lactide copolymer and application in biobased composites. ACS Sustain Chem Eng 1:1231–1238. doi: 10.1021/sc4000835 CrossRefGoogle Scholar
  22. 22.
    Kramárová Z, Alexy P, Chodák I et al (2007) Biopolymers as fillers for rubber blends. Polym Adv Technol 18:135–140. doi: 10.1002/pat.803 CrossRefGoogle Scholar
  23. 23.
    Jiang C, He H, Jiang H et al (2013) Nano-lignin filled natural rubber composites: preparation and characterization. Express Polym Lett 7:480–493. doi: 10.3144/expresspolymlett.2013.44 CrossRefGoogle Scholar
  24. 24.
    Botros SH, Eid MAM, Nageeb ZA (2006) Thermal stability and dielectric relaxation of natural rubber/soda lignin and natural rubber/thiolignin composites. J Appl Polym Sci 99:2504–2511. doi: 10.1002/app.22865 CrossRefGoogle Scholar
  25. 25.
    Chaochanchaikul K, Jayaraman K, Rosarpitak V, Sombatsompop N (2012) Influence of lignin content on photodegradation in wood/HDPE composites under UV weathering. Adv Compos Mater 7:38–55Google Scholar
  26. 26.
    Casenave S, Aït-Kadi A, Riedl B (1996) Mechanical behaviour of highly filled lignin/polyethylene composites made by catalytic grafting. Can J Chem Eng 74:308–315. doi: 10.1002/cjce.5450740216 CrossRefGoogle Scholar
  27. 27.
    Kosikova B, Kacurakova M, Demianova V (1993) Photooxidation of the composite lignin/polypropylene films. Chem Pap 47:132–136Google Scholar
  28. 28.
    Toriz G, Ramos J, Young RA (2004) Lignin-polypropylene composites. II. Plasma modification of kraft lignin and particulate polypropylene. J Appl Polym Sci 91:1920–1926. doi: 10.1002/app.13412 CrossRefGoogle Scholar
  29. 29.
    Yu Y, Song P, Jin C et al (2012) Catalytic effects of nickel (cobalt or zinc) acetates on thermal and flammability properties of polypropylene-modified lignin composites. Ind Eng Chem Res 51:12367–12374. doi: 10.1021/ie301953x CrossRefGoogle Scholar
  30. 30.
    Yu Y, Fu S, Song P et al (2012) Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym Degrad Stab 97:541–546. doi: 10.1016/j.polymdegradstab.2012.01.020 CrossRefGoogle Scholar
  31. 31.
    Toriz G, Denes F, Young RA (2002) Lignin-polypropylene composites. Part 1: Composites from unmodified lignin and polypropylene. Polym Compos 23:806–813. doi: 10.1002/pc.10478 CrossRefGoogle Scholar
  32. 32.
    Morandim-Giannetti AA, Agnelli JAM, Lanças BZ et al (2012) Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohydr Polym 87:2563–2568. doi: 10.1016/j.carbpol.2011.11.041 CrossRefGoogle Scholar
  33. 33.
    Rozman HD, Tan KW, Kumar RN et al (2000) The effect of lignin as a compatibilizer on the physical properties of coconut-fiber polypropylene composites. Eur Polym J 36:1483–1494. doi: 10.1016/S0014-3057(99)00200-1 CrossRefGoogle Scholar
  34. 34.
    Rozman HD, Kumar RN, Adlli MRM et al (1998) The effect of lignin and surface activation on the mechanical properties of rubberwood-polypropylene composites. J Wood Chem Technol 18:471–490. doi: 10.1080/02773819809349593 CrossRefGoogle Scholar
  35. 35.
    Tay GS, Shannon-Ong SH, Goh SW, Rozman HD (2011) Thermoplastic-lignocelluloses composites enhanced by chemically treated Alcell lignin as compatibilizer. J Thermoplast Compos Mater 26:733–746. doi: 10.1177/0892705711428660 CrossRefGoogle Scholar
  36. 36.
    Tay GS, Shannon-Ong SH, Goh SW, Rozman HD (2011) Enhancement of tensile and impact properties of thermoplastic lignocellulose composites by incorporation of chemically treated Alcell lignin as compatibilizer. Polym Plast Technol Eng 50:160–167. doi: 10.1080/03602559.2010.531423 CrossRefGoogle Scholar
  37. 37.
    Mikulášová M, Košíková B (1999) Biodegradability of lignin—Polypropylene composite films. Folia Microbiol (Praha) 44:669–672. doi: 10.1007/BF02825659 CrossRefGoogle Scholar
  38. 38.
    Košíková B, Gregorová A (2005) Sulfur-free lignin as reinforcing component of styrene-butadiene rubber. J Appl Polym Sci 97:924–929. doi: 10.1002/app.21448 CrossRefGoogle Scholar
  39. 39.
    Xiao S, Feng J, Zhu J et al (2013) Preparation and characterization of lignin-layered double hydroxide/styrene-butadiene rubber composites. J Appl Polym Sci 130:1308–1312. doi: 10.1002/app.39311 CrossRefGoogle Scholar
  40. 40.
    Yue X, Chen F, Zhou X (2012) Synthesis of lignin-g-MMA and the utilization of the copolymer in PVC/wood composites. J Macromol Sci Part B Phys 51:242–254. doi: 10.1080/00222348.2011.585328 CrossRefGoogle Scholar
  41. 41.
    Yue X, Chen F, Zhou X (2011) Improved interfacial bonding of PVC/wood-flour composites by lignin amine modification. BioResources 6:2022–2034Google Scholar
  42. 42.
    Barzegari MR, Alemdar A, Zhang Y, Rodrigue D (2012) Mechanical and rheological behavior of highly filled polystyrene with lignin. Polym Compos 33:353–361. doi: 10.1002/pc.22154 CrossRefGoogle Scholar
  43. 43.
    El-Zawawy WK, Ibrahim MM, Belgacem MN, Dufresneb A (2011) Characterization of the effects of lignin and lignin complex particles as filler on a polystyrene film. Mater Chem Phys 131:348–357. doi: 10.1016/j.matchemphys.2011.09.054 CrossRefGoogle Scholar
  44. 44.
    Stiubianu G, Cazacu M, Cristea M, Vlad A (2009) Polysiloxane-lignin composites. J Appl Polym Sci 113:2313–2321. doi: 10.1002/app CrossRefGoogle Scholar
  45. 45.
    Canetti M, Bertini F (2007) Supermolecular structure and thermal properties of poly(ethylene terephthalate)/lignin composites. Compos Sci Technol 67:3151–3157. doi: 10.1016/j.compscitech.2007.04.013 CrossRefGoogle Scholar
  46. 46.
    Kadla JF, Kubo S (2003) Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and kraft lignin. Macromolecules 36:7803–7811. doi: 10.1021/ma0348371 CrossRefGoogle Scholar
  47. 47.
    Li Y, Lin X, Zhuo X, Luo X (2013) Poly(vinyl alcohol)/quaternized lignin composite absorbent: synthesis, characterization and application for nitrate adsorption. J Appl Polym Sci 128:2746–2752. doi: 10.1002/app.38437 CrossRefGoogle Scholar
  48. 48.
    Setua DK, Shukla MK, Nigam V et al (2000) Lignin reinforced rubber composites. Polym Compos 21:988–995. doi: 10.1002/pc.10252 CrossRefGoogle Scholar
  49. 49.
    Sahoo S, Misra M, Mohanty AK (2011) Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos Part A Appl Sci Manuf 42:1710–1718. doi: 10.1016/j.compositesa.2011.07.025 CrossRefGoogle Scholar
  50. 50.
    Sahoo S, Misra M, Mohanty AK (2013) Effect of compatibilizer and fillers on the properties of injection molded lignin-based hybrid green composites. J Appl Polym Sci 127:4110–4121. doi: 10.1002/app.37667 CrossRefGoogle Scholar
  51. 51.
    Gellerstedt G, Sjöholm E, Brodin I (2010) The wood-based biorefinery: a source of carbon fiber? Open Agric J 3:119–124. doi: 10.2174/1874331501004010119 CrossRefGoogle Scholar
  52. 52.
    Kadla JF, Kubo S, Venditti RA et al (2002) Lignin-based carbon fibers for composite fiber applications. Carbon NY 40:2913–2920. doi: 10.1016/S0008-6223(02)00248-8 CrossRefGoogle Scholar
  53. 53.
    Lin J, Koda K, Kubo S et al (2014) Improvement of mechanical properties of softwood lignin-based carbon fibers. J Wood Chem Technol 34:111–121. doi: 10.1080/02773813.2013.839707 CrossRefGoogle Scholar
  54. 54.
    Dallmeyer I, Lin LT, Li Y et al (2014) Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning. Macromol Mater Eng 299:540–551. doi: 10.1002/mame.201300148 CrossRefGoogle Scholar
  55. 55.
    Lallave M, Bedia J, Ruiz-Rosas R et al (2007) Filled and hollow carbon nanofibers by coaxial electrospinning of Alcell lignin without binder polymers. Adv Mater 19:4292–4296. doi: 10.1002/adma.200700963 CrossRefGoogle Scholar
  56. 56.
    Choi DI, Lee J-N, Song J et al (2013) Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes. J Solid State Electrochem 17:2471–2475. doi: 10.1007/s10008-013-2112-5 CrossRefGoogle Scholar
  57. 57.
    Liting Lin YLFKK, Lin L, Li Y, Ko FK (2013) Fabrication and properties of lignin based carbon nanofiber. J Fiber Bioeng Informatics 6:335–347. doi: 10.3993/jfbi12201301 Google Scholar
  58. 58.
    Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24:2547–2566. doi: 10.1002/adma.201104940 CrossRefGoogle Scholar
  59. 59.
    Xu X, Zhou J, Jiang L et al (2013) Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils. Mater Lett 109:175–178. doi: 10.1016/j.matlet.2013.07.082 CrossRefGoogle Scholar
  60. 60.
    Frank E, Hermanutz F, Buchmeiser MR (2012) Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng 297:493–501. doi: 10.1002/mame.201100406 CrossRefGoogle Scholar
  61. 61.
    Kubo S, Kadla JF (2005) Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ 13:97–105. doi: 10.1007/s10924-005-2941-0 CrossRefGoogle Scholar
  62. 62.
    Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130:713–728. doi: 10.1002/app.39273 CrossRefGoogle Scholar
  63. 63.
    Norberg I, Nordström Y, Drougge R et al (2012) A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. J Appl Polym Sci 128:3824–3830. doi: 10.1002/app.38588 CrossRefGoogle Scholar
  64. 64.
    Zhang M, Ogale AA (2014) Carbon fibers from dry-spinning of acetylated softwood kraft lignin. Carbon NY 69:626–629. doi: 10.1016/j.carbon.2013.12.015 CrossRefGoogle Scholar
  65. 65.
    Dallmeyer I, Ko F, Kadla JF (2010) Electrospinning of technical lignins for the production of fibrous networks. J Wood Chem Technol 30:315–329. doi: 10.1080/02773813.2010.527782 CrossRefGoogle Scholar
  66. 66.
    Otani S (1981) Carbonaceous mesophase and carbon fibers. Mol Cryst Liq Cryst 63:249CrossRefGoogle Scholar
  67. 67.
    Sudo K, Shimizu K (1992) A new carbon fiber from lignin. J Appl Polym Sci 44:127–134CrossRefGoogle Scholar
  68. 68.
    Sudo K, Shimizu K, Yokoyama A, Nakashima N (1993) A new modification method of exploded lignin for the preparation of a carbon fiber precursor. J Appl Polym Sci 48:1485–1491CrossRefGoogle Scholar
  69. 69.
    Ruiz-Rosas R, Bedia J, Lallave M et al (2010) The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon NY 48:696–705. doi: 10.1016/j.carbon.2009.10.014 CrossRefGoogle Scholar
  70. 70.
    Johnson DJ, Tomizuka I, Watanabe O (1975) The fine structure of lignin-based carbon fibres. Carbon NY 13:321–325. doi: 10.1016/0008-6223(75)90037-8 CrossRefGoogle Scholar
  71. 71.
    Braun JL, Holtman KM, Kadla JF (2005) Lignin-based carbon fibers: oxidative thermostabilization of kraft lignin. Carbon NY 43:385–394. doi: 10.1016/j.carbon.2004.09.027 CrossRefGoogle Scholar
  72. 72.
    Foston M, Nunnery GA, Meng X et al (2013) NMR a critical tool to study the production of carbon fiber from lignin. Carbon NY 52:65–73. doi: 10.1016/j.carbon.2012.09.006 CrossRefGoogle Scholar
  73. 73.
    Kubo S, Uraki Y, Sano Y (1998) Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon NY 36:1119–1124. doi: 10.1016/S0008-6223(98)00086-4 CrossRefGoogle Scholar
  74. 74.
    Uraki Y, Nakatani A, Kubo S, Sano Y (2001) Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin. J Wood Sci 47:465–469. doi: 10.1007/bf00767899 CrossRefGoogle Scholar
  75. 75.
    Nordström Y, Joffe R, Sjöholm E (2013) Mechanical characterization and application of Weibull statistics to the strength of softwood lignin-based carbon fibers. J Appl Polym Sci 130:3689–3697. doi: 10.1002/app.39627 CrossRefGoogle Scholar
  76. 76.
    Compere AL, Griffith WL, Leitten CF Jr, Petrovan S (2004) Improving the fundamental properties of lignin-based carbon fiber for transportation applications. SAMPE Conf Proc 49:2246–2254Google Scholar
  77. 77.
    Griffith WL, Compere AL, Leitten CF Jr, Shaffer JT (2003) Low-cost, lignin-based carbon fiber for transportation applications. Int SAMPE Tech Conf 35:142–149Google Scholar
  78. 78.
    Thunga M, Chen K, Grewell D, Kessler MR (2014) Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon NY 68:159–166. doi: 10.1016/j.carbon.2013.10.075 CrossRefGoogle Scholar
  79. 79.
    Thielemans W, Wool RP (2005) Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling. Biomacromol 6:1895–1905. doi: 10.1021/bm0500345 CrossRefGoogle Scholar
  80. 80.
    Hu S, Hsieh Y-L (2013) Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin. J Mater Chem A 1:11279–11288. doi: 10.1039/c3ta12538f CrossRefGoogle Scholar
  81. 81.
    Bissett PJ, Herriott CW (2010) Lignin/polyacrylonitrile-containing dopes, fibers and production methods. US Patent 20120003471, 30 Jun 2010Google Scholar
  82. 82.
    Sazanov YN, Fedorova GN, Kulikova EM et al (2007) Cocarbonization of polyacrylonitrile with lignin. Russ J Appl Chem 80:619–622. doi: 10.1134/S1070427207040209 CrossRefGoogle Scholar
  83. 83.
    Seydibeyoğlu MÖ (2012) A novel partially biobased PAN-lignin blend as a potential carbon fiber precursor. J Biomed Biotechnol 2012:1–8. doi: 10.1155/2012/598324 CrossRefGoogle Scholar
  84. 84.
    Sazanov YN, Kostycheva DM, Fedorova GN et al (2008) Composites of lignin and polyacrylonitrile as carbon precursors. Russ J Appl Chem 81:1220–1223. doi: 10.1134/S1070427208070185 CrossRefGoogle Scholar
  85. 85.
    Lin J, Kubo S, Yamada T et al (2012) Chemical thermostabilization for the preparation of carbon fibers from softwood lignin. BioResources 7:5634–5646Google Scholar
  86. 86.
    Maradur SP, Kim CH, Kim SY et al (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met 162:453–459. doi: 10.1016/j.synthmet.2012.01.017 CrossRefGoogle Scholar
  87. 87.
    Ito K, Shigemoto T (1989) Manufacture of lignin precursor fibers for carbon fibers, Japanese patentGoogle Scholar
  88. 88.
    Shen Q, Zhang T, Zhang W-X et al (2011) Lignin-based activated carbon fibers and controllable pore size and properties. J Appl Polym Sci 121:989–994. doi: 10.1002/app CrossRefGoogle Scholar
  89. 89.
    Qin W, Kadla JF (2012) Carbon fibers based on pyrolytic lignin. J Appl Polym Sci 126:E203–E212. doi: 10.1002/app Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringUniversity of Western OntarioLondonCanada

Personalised recommendations