Advertisement

Degradation of Lignin by Pyrolysis

  • Chunbao XuEmail author
  • Fatemeh Ferdosian
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Fast pyrolysis is an efficient technique for thermal degradation of lignin to bio-oils containing bio-phenols for the synthesis of adhesives, resins, and polymers. Lignin has a complex structure, and hence a large number of pyrolytic components are generated during the pyrolysis process. The composition of the pyrolytic products depends on the type of lignin, temperature, types of catalyst, and the design of the pyrolysis reactor. It was suggested that the pyrolysis of lignin consists of two steps. In the first step, by thermal cracking of the lignin macromolecule, vapor of monomeric phenolic compounds is formed during the vapor condensation process, followed by re-oligomerization of the monomeric compounds, forming pyrolysis oils comprising remarkable amounts of dimeric and other oligomeric products. However, the precise mechanism of the pyrolysis of lignin is not clear due to the complexity of the process.

Keywords

Fast pyrolysis of lignin Degradation of lignin Bio-oils Bio-phenols Adhesives Resins Polymers 

References

  1. 1.
    Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94. doi: 10.1016/j.biombioe.2011.01.048 CrossRefGoogle Scholar
  2. 2.
    Bridgwater T (2006) Biomass for energy. J Sci Food Agric 86:1755–1768. doi: 10.1002/jsfa.2605 CrossRefGoogle Scholar
  3. 3.
    Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73. doi: 10.1016/S1364-0321(99)00007-6 CrossRefGoogle Scholar
  4. 4.
    Guo X, Liu Z, Liu Q, Shi L (2015) Modeling of kraft lignin pyrolysis based on bond dissociation and fragments coupling. Fuel Process Technol 135:133–149. doi: 10.1016/j.fuproc.2014.12.009 CrossRefGoogle Scholar
  5. 5.
    Wang S, Ru B, Lin H et al (2015) Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour Technol 182:120–127. doi: 10.1016/j.biortech.2015.01.127 CrossRefGoogle Scholar
  6. 6.
    Lou R, Wu S, Lyu G (2015) Quantified monophenols in the bio-oil derived from lignin fast pyrolysis. J Anal Appl Pyrol 111:27–32. doi: 10.1016/j.jaap.2014.12.022 CrossRefGoogle Scholar
  7. 7.
    Nguyen TS, He S, Lefferts L et al (2016) Study on the catalytic conversion of lignin-derived components in pyrolysis vapour using model component. Catal Today 259:381–387. doi: 10.1016/j.cattod.2015.04.043 CrossRefGoogle Scholar
  8. 8.
    Huang J, He C (2015) Pyrolysis mechanism of α-O-4 linkage lignin dimer: a theoretical study. J Anal Appl Pyrol 113:655–664. doi: 10.1016/j.jaap.2015.04.012 CrossRefGoogle Scholar
  9. 9.
    Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608. doi: 10.1016/j.rser.2014.06.013 CrossRefGoogle Scholar
  10. 10.
    Wang W-L, Ren X-Y, Chang J-M et al (2015) Characterization of bio-oils and bio-chars obtained from the catalytic pyrolysis of alkali lignin with metal chlorides. Fuel Process Technol 138:605–611. doi: 10.1016/j.fuproc.2015.06.048 CrossRefGoogle Scholar
  11. 11.
    De Wild PJ, Huijgen WJJ, Heeres HJ (2012) Pyrolysis of wheat straw-derived organosolv lignin. J Anal Appl Pyrol 93:95–103. doi: 10.1016/j.jaap.2011.10.002 CrossRefGoogle Scholar
  12. 12.
    Bährle C, Custodis V, Jeschke G et al (2014) In situ observation of radicals and molecular products during lignin pyrolysis. Chemsuschem 7:2022–2029. doi: 10.1002/cssc.201400079 CrossRefGoogle Scholar
  13. 13.
    Sharma RK, Wooten JB, Baliga VL et al (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482. doi: 10.1016/j.fuel.2003.11.015 CrossRefGoogle Scholar
  14. 14.
    de Wild P, Van der Laan R, Kloekhorst A, Heeres E (2009) Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation. Environ Prog Sustain Energy 28:461–469. doi: 10.1002/ep.10391 CrossRefGoogle Scholar
  15. 15.
    Brebu M, Cazacu G, Chirila O (2011) Pyrolysis of lignin—a potential method for obtaining chemicals and/or fuels. Cellul Chem Technol 45:43–50Google Scholar
  16. 16.
    Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chemsuschem 3:1227–1235. doi: 10.1002/cssc.201000157 CrossRefGoogle Scholar
  17. 17.
    Hilbers TJ, Wang Z, Pecha B et al (2015) Cellulose-Lignin interactions during slow and fast pyrolysis. J Anal Appl Pyrol 114:197–207. doi: 10.1016/j.jaap.2015.05.020 CrossRefGoogle Scholar
  18. 18.
    Mullen CA, Boateng AA (2010) Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process Technol 91:1446–1458. doi: 10.1016/j.fuproc.2010.05.022 CrossRefGoogle Scholar
  19. 19.
    Guo DL, Wu S-B, Liu B et al (2012) Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification. Appl Energy 95:22–30. doi: 10.1016/j.apenergy.2012.01.042 CrossRefGoogle Scholar
  20. 20.
    Kibet J, Khachatryan L, Dellinger B (2012) Molecular products and radicals from pyrolysis of lignin. Environ Sci Technol 46:12994–13001. doi: 10.1021/es302942c CrossRefGoogle Scholar
  21. 21.
    Britt PF, Buchanan a. C, Thomas KB, Lee S-K (1995) Pyrolysis mechanisms of lignin: surface-immobilized model compound investigation of acid-catalyzed and free-radical reaction pathways. J Anal Appl Pyrol 33:1–19. doi: 10.1016/0165-2370(94)00846-S
  22. 22.
    Patwardhan PR, Brown RC, Shanks BH (2011) Understanding the fast pyrolysis of lignin. Chemsuschem 4:1629–1636. doi: 10.1002/cssc.201100133 CrossRefGoogle Scholar
  23. 23.
    Kotake T, Kawamoto H, Saka S (2014) Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin. J Anal Appl Pyrol 105:309–316. doi: 10.1016/j.jaap.2013.11.018 CrossRefGoogle Scholar
  24. 24.
    Huang X, Liu C, Huang J, Li H (2011) Theory studies on pyrolysis mechanism of phenethyl phenyl ether. Comput Theor Chem 976:51–59. doi: 10.1016/j.comptc.2011.08.001 CrossRefGoogle Scholar
  25. 25.
    Beste A, Buchanan AC (2009) Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. J Org Chem 74:2837–2841CrossRefGoogle Scholar
  26. 26.
    Beste A, Buchanan AC, Harrison RJ (2008) Computational prediction of α/β selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers. J Phys Chem A 112:4982–4988. doi: 10.1021/jp800767j CrossRefGoogle Scholar
  27. 27.
    Huang J, Liu C, Wu D et al (2014) Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound. J Anal Appl Pyrol 109:98–108CrossRefGoogle Scholar
  28. 28.
    Huang X, Cheng D, Chen F, Zhan X (2013) A density functional theory study on pyrolysis mechanism of lignin hydrogen plasma. Ind Eng Chem Res 52:14107–14115. doi: 10.1016/S1872-5813(12)60030-9 CrossRefGoogle Scholar
  29. 29.
    Shin E-J, Nimlos MR, Evans RJ (2001) A study of the mechanisms of vanillin pyrolysis by mass spectrometry and multivariate analysis. Fuel 80:1689–1696. doi: 10.1016/S0016-2361(01)00055-2 CrossRefGoogle Scholar
  30. 30.
    Chen L, Ye X, Luo F et al (2015) Pyrolysis mechanism of β-O-4 type lignin model dimer. J Anal Appl Pyrol 115:103–111. doi: 10.1016/j.jaap.2015.07.009 CrossRefGoogle Scholar
  31. 31.
    Huang J, Liu C, Tong H et al (2014) A density functional theory study on formation mechanism of CO, CO2 and CH4 in pyrolysis of lignin. Comput Theor Chem 1045:1–9. doi: 10.1016/j.comptc.2014.06.009 CrossRefGoogle Scholar
  32. 32.
    Belgacem MN, Blayo A, Gandini A (2003) Organosolv lignin as a filler in inks, varnishes and paints. Ind Crops Prod 18:145–153. doi: 10.1016/S0926-6690(03)00042-6 CrossRefGoogle Scholar
  33. 33.
    Custodis VBF, Bährle C, Vogel F, van Bokhoven JA (2015) Phenols and aromatics from fast pyrolysis of variously prepared lignins from hard- and softwoods. J Anal Appl Pyrol 115:214–223. doi: 10.1016/j.jaap.2015.07.018
  34. 34.
    Chen L, Wang X, Yang H et al (2015) Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS. J Anal Appl Pyrol 113:499–507. doi: 10.1016/j.jaap.2015.03.018 CrossRefGoogle Scholar
  35. 35.
    Wang S, Wang K, Liu Q et al (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27:562–567. doi: 10.1016/j.biotechadv.2009.04.010 CrossRefGoogle Scholar
  36. 36.
    Shen D, Liu G, Zhao J et al (2015) Thermo-chemical conversion of lignin to aromatic compounds: effect of lignin source and reaction temperature. J Anal Appl Pyrol 112:56–65. doi: 10.1016/j.jaap.2015.02.022 CrossRefGoogle Scholar
  37. 37.
    Saiz-Jimenez C, De Leeuw JW (1986) Lignin pyrolysis products: their structures and their significance as biomarkers. Org Geochem 10:869–876. doi: 10.1016/S0146-6380(86)80024-9 CrossRefGoogle Scholar
  38. 38.
    Bai X, Kim KH, Brown RC et al (2014) Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel 128:170–179. doi: 10.1016/j.fuel.2014.03.013 CrossRefGoogle Scholar
  39. 39.
    Wang S, Lin H, Ru B et al (2014) Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis. J Anal Appl Pyrol 108:78–85. doi: 10.1016/j.jaap.2014.05.014 CrossRefGoogle Scholar
  40. 40.
    Watanabe H, Shimomura K, Okazaki K (2015) Carbonate formation during lignin pyrolysis under CO2 and its effect on char oxidation. Proc Combust Inst 35:2423–2430. doi: 10.1016/j.proci.2014.06.014 CrossRefGoogle Scholar
  41. 41.
    Kim J-Y, Hwang H, Park J et al (2014) Predicting structural change of lignin macromolecules before and after heat treatment using the pyrolysis-GC/MS technique. J Anal Appl Pyrol 110:305–312. doi: 10.1016/j.jaap.2014.09.020 CrossRefGoogle Scholar
  42. 42.
    Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498:61–66. doi: 10.1016/j.tca.2009.10.003 CrossRefGoogle Scholar
  43. 43.
    Choi HS, Meier D (2013) Fast pyrolysis of Kraft lignin—vapor cracking over various fixed-bed catalysts. J Anal Appl Pyrol 100:207–212. doi: 10.1016/j.jaap.2012.12.025 CrossRefGoogle Scholar
  44. 44.
    Kim J-Y, Lee JH, Park J et al (2015) Catalytic pyrolysis of lignin over HZSM-5 catalysts: effect of various parameters on the production of aromatic hydrocarbon. J Anal Appl Pyrol 114:273–280. doi: 10.1016/j.jaap.2015.06.007 CrossRefGoogle Scholar
  45. 45.
    Zhou S, Garcia-Perez M, Pecha B et al (2013) Effect of the fast pyrolysis temperature on the primary and secondary products of lignin. Energy Fuels 27:5867–5877. doi: 10.1021/ef4001677 CrossRefGoogle Scholar
  46. 46.
    Jiang G, Nowakowski DJ, Bridgwater AV (2010) Effect of the temperature on the composition of lignin pyrolysis products. Energy Fuels 24:4470–4475. doi: 10.1021/ef100363c CrossRefGoogle Scholar
  47. 47.
    Shen D, Zhao J, Xiao R, Gu S (2015) Production of aromatic monomers from catalytic pyrolysis of black-liquor lignin. J Anal Appl Pyrol 111:47–54. doi: 10.1016/j.jaap.2014.12.013 CrossRefGoogle Scholar
  48. 48.
    Zhang H, Xiao R, Nie J et al (2015) Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor. Bioresour Technol 192:68–74. doi: 10.1016/j.biortech.2015.05.040 CrossRefGoogle Scholar
  49. 49.
    Ben H, Ragauskas AJ (2011) Pyrolysis of kraft lignin with additives. Energy Fuels 25:4662–4668CrossRefGoogle Scholar
  50. 50.
    Ma Z, Troussard E, van Bokhoven JA (2012) Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl Catal A Gen 423–424:130–136. doi: 10.1016/j.apcata.2012.02.027
  51. 51.
    Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi: 10.1016/j.fuel.2006.12.013 CrossRefGoogle Scholar
  52. 52.
    Ohra-aho T, Linnekoski J (2014) Catalytic pyrolysis of lignin by using analytical pyrolysis-GC–MS. J Anal Appl Pyrol 113:186–192. doi: 10.1016/j.jaap.2014.12.012 CrossRefGoogle Scholar
  53. 53.
    Li B, Lv W, Zhang Q et al (2014) Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: kinetics and products. J Anal Appl Pyrol 108:295–300. doi: 10.1016/j.jaap.2014.04.002 CrossRefGoogle Scholar
  54. 54.
    Zhang M, Resende FLP, Moutsoglou A (2014) Catalytic fast pyrolysis of aspen lignin via Py-GC/MS. Fuel 116:358–369. doi: 10.1016/j.fuel.2013.07.128 CrossRefGoogle Scholar
  55. 55.
    Maldhure AV, Ekhe JD (2013) Pyrolysis of purified kraft lignin in the presence of AlCl3 and ZnCl2. J Environ Chem Eng 1:844–849. doi: 10.1016/j.jece.2013.07.026 CrossRefGoogle Scholar
  56. 56.
    Peng C, Zhang G, Yue J, Xu G (2014) Pyrolysis of lignin for phenols with alkaline additive. Fuel Process Technol 124:212–221. doi: 10.1016/j.fuproc.2014.02.025 CrossRefGoogle Scholar
  57. 57.
    Chen Y-X, Zheng Y, Li M, Zhu X-F (2015) Arene production by W2C/MCM-41-catalyzed upgrading of vapors from fast pyrolysis of lignin. Fuel Process Technol 134:46–51. doi: 10.1016/j.fuproc.2014.12.017 CrossRefGoogle Scholar
  58. 58.
    Zheng Y, Chen D, Zhu X (2013) Aromatic hydrocarbon production by the online catalytic cracking of lignin fast pyrolysis vapors using Mo2N/γ-Al2O3. J Anal Appl Pyrol 104:514–520. doi: 10.1016/j.jaap.2013.05.018 CrossRefGoogle Scholar
  59. 59.
    Li D, Briens C, Berruti F (2015) Improved lignin pyrolysis for phenolics production in a bubbling bed reactor—effect of bed materials. Bioresour Technol 189:7–14. doi: 10.1016/j.biortech.2015.04.004 CrossRefGoogle Scholar
  60. 60.
    Trinh TN, Jensen PA, Sárossy Z et al (2013) Fast pyrolysis of lignin using a pyrolysis centrifuge reactor. Energy Fuels 27:3802–3810. doi: 10.1021/ef400527k CrossRefGoogle Scholar
  61. 61.
    Tumbalam Gooty A, Li D, Berruti F, Briens C (2014) Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors. J Anal Appl Pyrol 106:33–40. doi: 10.1016/j.jaap.2013.12.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringUniversity of Western OntarioLondonCanada

Personalised recommendations