Skip to main content

View to the Future and Exploration of Our Galaxy

  • Chapter
  • First Online:
Future Spacecraft Propulsion Systems and Integration

Part of the book series: Springer Praxis Books ((ASTROENG))

  • 2507 Accesses

Abstract

The Andromeda Galaxy (Messier 31 or M31) is the nearest galaxy to the Milky Way, our galaxy. Both are residing within the neighborhood of the galactic cluster, which consists of an assembly of galaxies that are bound together by gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Albert, D.Z. and Galchen, R. (2009) “Was Einstein Wrong? A Quantum Threat”, Scientific American, Vol. 300, No. 3, March 2009, pp. 32–39.

    Google Scholar 

  • Alcubierre, M. (1994) “The Warp Drive: Hyper-Fast Travel within General Relativity”, Classic and Quantum Gravity, Vol. 11, L73–L77, February 1994.

    Google Scholar 

  • Ambjørn, J., Jurkiewicz, J. and Loll, R. (2008) “The Self-Organizing Quantum Universe”, Scientific American, Vol. 299, No. 1, July 2008, pp. 42–49.

    Google Scholar 

  • Anderson, J.D. (1997) A History of Aerodynamics—and its Impact on Flying Machines, Cambridge Aerospace Series, Cambridge University Press, 1997.

    Google Scholar 

  • Anderson, J.D., Laing, E.L., Liu, E.L., Nieto, M.M. and Turyshev, S.G. (1998) “Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration”, Phys. Review Letters, Vol. 81, 1998, pp. 2858–2861.

    Google Scholar 

  • Anon. (2008) “CERN LHC: The Guide”, CERN-Brochure-2008-001-Eng, January 2008.

    Google Scholar 

  • Ball, P. (2007) “Fundamental Physics: Feel the Force”, Nature, Vol. 447, No. 7146, 14 June 2007, pp. 772–774.

    Google Scholar 

  • Barceló, C., Liberati, S., Sonego, S. and Visser, M. (2009) “Black Stars, Not Holes”, Scientific American, Vol. 301, No. 4, October 2009, pp. 38–45.

    Google Scholar 

  • Bertolami, O. and Tajmar, M. (2005) “Hypothetical Gravity Control and Implications for Spacecraft Propulsion”, J. Propulsion Power, Vol. 21, July 2005, pp. 692–696.

    Google Scholar 

  • Betts, B. (2012) “Pioneer Anomaly Solved!”, The Planetary Society, 19 April 2012.

    Google Scholar 

  • Bilaniuk, Jeff (1962) Personal communication.

    Google Scholar 

  • Bondi, H. (1957) “Negative Mass in General Relativity”, Review of Modern Physics, Vol. 29, No. 3, 01 July 1957, pp. 423–428.

    Google Scholar 

  • Boniolo, G. (ed.) (1997) Filosofia della Fisica (Philosophy of Physics), Mondadori, Milan, Chapter 1 (in Italian) 1997 [this textbook covers from relativity to logical quantum mechanics. Chapter 1 (pp. 1–167) deals with the principle of special relativity and its ‘paradoxes’ in detail; in N. Falletta’s Paradoxicon, the ‘twins paradox’ is explained for the general public in Chapter 20].

    Google Scholar 

  • Boniolo, G. and Budinich, P. (2010) The Role of Mathematics in Physical Sciences, Springer Publisher, softcover reprint of 1st edition 2005 edition, February 2010.

    Google Scholar 

  • Brumfiel, G. (2008a) “Physicists Await Dark Matter Confirmation”, Nature, International Weekly Journal of Science, Vol. 454, No. 7206, 13 August 2008, pp. 808–809.

    Google Scholar 

  • Brumfiel, G. (2008b) “Particle Physics: The Race to Break the Standard Model”, Nature, Vol. 455, No. 7210, 10 September 2008, pp. 156–159.

    Google Scholar 

  • Carroll, S.M. (2008) “The Cosmic Origin of Time’s Arrow”, Scientific American, Vol. 298, No. 6, June 2008, pp. 48–57.

    Google Scholar 

  • Casimir, H.B.G. (1948) “On the Attraction Between Two Perfectly Conducting Plates”, Proc. Koninklijke Nederlandse Akademie Wetenschappen, Vol. 51, 1948, pp. 793-795.

    Google Scholar 

  • Cook, N. (2002) The Hunt for Zero Point: Inside the Classified World of Antigravity Technology, Broadway Publisher, New York, August 2002.

    Google Scholar 

  • Courtland, R. (2008) “Astronomers Find Universe’s Dimmest Known Galaxy”, New Scientist, Daily News, 18 September 2008.

    Google Scholar 

  • Davies, P. (2002) “That Mysterious Flow”, Scientific American, Vol. 287, No. 3, October 2002, pp. 24–29.

    Google Scholar 

  • deGrasse Tyson, N. (2007) Death by Black Hole: and other Cosmic Quandaries, W.W. Norton & Company, January 2007.

    Google Scholar 

  • DeWitt, B.S. (2003) The Global Approach to Quantum Field Theory, Vol. 1 and 2, Oxford University Press, New York, 2003.

    Google Scholar 

  • DeWitt, C. and DeWitt, B.C. (editors) (1973) Black Holes, Gordon & Breach, London, 1973 [this is a collection of chapters by Hawking, Carter, Bardeen, Gursky, Novikov, Thorne and Ruffini on black holes theory and data; it is a good snapshot of the initial stage of research on this topic].

    Google Scholar 

  • Einstein, A. (1905) “Zur Elektrodynamik bewegter Körper”, Annalen der Physik, Vol. 17, Issue 10, 30 June 1905, pp. 891–921.

    Google Scholar 

  • Einstein, A. (1915) “Zur allgemeinen Relativitätstheorie”, Königlich Preußische Akademie der Wissenschaften, Sitzungsberichte: 778–786, Vol. 6, 21 December 1915, pp. 214–224.

    Google Scholar 

  • Faraoni, V. (2014) Special Relativity—Undergraduate Lecture Notes in Physics, Springer Publisher, 2014, Berlin, Chapter 2.

    Google Scholar 

  • Ford, L.H. and Roman, T.A. (2000) “Negative Energy, Wormholes and Warp Drive”, Scientific American, Vol. 282, No. 1, January 2000, pp. 46–53.

    Google Scholar 

  • Forward, R. L. (1990) “Negative Matter Propulsion”, J. Propulsion and Power, Vol. 6, No. 1, 1990, pp. 28–37.

    Google Scholar 

  • Friedman, A. (2014) “Can the Cosmos Test Quantum Entanglement?”, AstronomyMagazine, Kalmbach Publishing Co., 2014, pp. 28–33.

    Google Scholar 

  • Froning, H.D., Jr. (1980) “Propulsion Requirements for a Quantum Interstellar Ramjet”, J. British Interplanetary Society, Vol. 33, No. 7, 1980, pp. 265–270.

    Google Scholar 

  • Froning, H.D., Jr. (1981) “Investigation of a Quantum Ramjet for Interstellar Flight”, MDC paper G7887, AIAA/SAE/ASME 17th Joint Propulsion Conference, Colorado Springs, 27–29 July 1981.

    Google Scholar 

  • Froning, H.D., Jr. (1983) “Requirements for Rapid Transport to the Further Stars”, J. British Interplanetary Society, Vol. 36, May 1983, pp. 227–230.

    Google Scholar 

  • Froning, H.D., Jr. (1985) “Use of Vacuum Energies for Interstellar Flight”, MDC paper H1496, presented at the 36th Congress of the International Astronautical Federation, Stockholm, Sweden, 7–12 October 1985.

    Google Scholar 

  • Froning, H.D., Jr. (1986) “Investigation of Very High Energy Rockets for Future SSTO Vehicles”, MDC paper H1496, 37th Congress of the International Astronautical Federation, Innsbruck, Austria, 4–11 October 1986.

    Google Scholar 

  • Froning, H.D., Jr. (1987) “Investigation of Antimatter Airbreathing Propulsion for Single-Stage-To-Orbit Ships”, MDC paper H2618, presented at the 38th Congress of the International Astronautical Federation, Brighton, UK, 10–17 October 1987.

    Google Scholar 

  • Froning, H.D., Jr. (1989) “Interstellar Studies—Their Role in Astronautical Progress and the Future of Flight”, MDC paper H5276, 40th Congress of the International Astronautical Federation, Malaga, Spain, 7–12 October 1989.

    Google Scholar 

  • Froning, H.D. Jr. (1991) “Field Propulsion for Future Flight”, paper AIAA-1991-1990-CP, 27th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, CA, 24–26 June 1991.

    Google Scholar 

  • Froning. H.D. Jr. (1997) “Experiments to Explore Space Coupling by Specially Conditioned Electromagnetic Fields”, NASA/CP-1999-208694, NASA Breakthrough Propulsion Physics Workshop Proceedings, 1999, pp. 207–215.

    Google Scholar 

  • ‘t Hooft, G. (2007) “Perspective The Making of the Standard Model”, Nature, Vol 448, 19 July 2007, pp. 271–273.

    Google Scholar 

  • Froning, H.D. Jr. (1999) “Fast Space Travel by Vacuum Zero-Point Field Perturbations”, AIP Conference Proceedings, Vol. 458, Issue 920, 1999, pp. 920–925.

    Google Scholar 

  • Froning, H.D. Jr. (2003) “Study to Determine the Effectiveness and Cost of a Laser-Propelled ‘Lightcraft’ Vehicle System, AFRL-PR-ED-TR-2003-0033, Special Report, AFRL, Air Force Materiel Command, Edwards AFB, CA, 2003.

    Google Scholar 

  • Froning, H.D., Jr. and Barrett, T.W. (1997) “Inertia Reduction—and Possibly Impulsion—by Conditioning Electromagnetic Fields”, AIAA-97-3170, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle Washington, 6–9 July 1997.

    Google Scholar 

  • Froning, H.D., Jr. and Barrett, T.W. (1998) “Space Coupling by Specially Conditioned Electromagnetic Fields”, AIP Conference Proceedings, Vol. 420, Issue 1449, 1998.

    Google Scholar 

  • Froning, H.D. and Metholic, G.V. (2008) “Unlabored Transitions between Subluminal and Superluminal Speeds in a Higher Dimensional Tri‐Space”, AIP Conference Proceedings, Vol. 969, Issue 1, 21 January 2008.

    Google Scholar 

  • Froning, H.D., Jr. and Roach, R.L. (2000) “Preliminary Simulations of Vehicle Interactions with the Zero-Point Vacuum by Fluid-Dynamic Approximations”, paper AIAA-2000-3478, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, 17–19 July 2000.

    Google Scholar 

  • Froning, H.D., Jr. and Roach, R.L. (2002) “Preliminary Simulations of Vehicle Interactions with the Quantum Vacuum by Fluid Dynamic Approximations”, paper AIAA-2002-3925, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, IN, 7–10 July 2002.

    Google Scholar 

  • Froning, H.D., Jr. and Roach, R.L. (2007) “Fluid Dynamic Simulations of Warp Drive Flight Through Negative Pressure Zero-Point Vacuum”, AIP Conference Proceedings, Vol. 880, Issue 1125, 2007.

    Google Scholar 

  • Froning, H.D., Jr., Barrett, T.W. and Hathaway, G. (1998) “Experiments Involving Specially Conditioned EM Radiation, Gravitation and Matter”, AIAA paper AIAA-98-3138, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, 13–15 July 1998.

    Google Scholar 

  • Garattini, R. (2008) “Casimir Energy: A Fuel for Traversable Wormholes”, J. British Interplanetary Society, Vol. 61, No. 9, 2008, pp. 370–372.

    Google Scholar 

  • Greene, B. (1999) The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, W.W. Norton Publisher, 1999.

    Google Scholar 

  • Gribbin, J. (1992) In Search for the Edge of Time, Bantam Books, Transworld Publishers, London, April 1992.

    Google Scholar 

  • Hamilton D.B. (Ed.) (2000) “Breakthrough Energy Physics Research (BEPR) Program Plan”, US Department of Energy, Office of Energy Efficiency & Renewable Energy, Washington, DC, October 2000.

    Google Scholar 

  • Hensen, B, Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L, Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H. and Hanson, R. (2015) “Loophole-Free Bell Inequality Violation Using Electron Spins Separated by 1.3 Kilometres”, Nature online, Vol. 526, 29 October 2015, pp. 682–686.

    Google Scholar 

  • Hogan, J. (2007) “Unseen Universe: Welcome to the Dark Side”, Nature, Vol. 448, No. 7151, July 2007, pp. 240–245.

    Google Scholar 

  • Hoyle, F. (1957) The Black Cloud, Easton Press, 1957.

    Google Scholar 

  • Jones (1982) Personal communication.

    Google Scholar 

  • Kane, G. (2003) “The Dawn of Physics Beyond the Standard Model”, Scientific American, Vol. 288, No. 6, June 2003, pp. 68–75.

    Google Scholar 

  • Kaufmann, W.J. (1992) Discovering the Universe, W.H. Freeman & Company, October 1992.

    Google Scholar 

  • Krause, H.G.L. (1960) ”Relativistic Rocket Mechanics”, NASA Report TT F-36, Technical Translation from Astronautica Acta, Vol. II, No. 1, 1956, Washington, DC, 01 October 1960.

    Google Scholar 

  • Kuntz, T. (2001) “150th Anniversary: 1851-2001; The Facts That Got Away”, The New York Times, World, 14 November 2001.

    Google Scholar 

  • Lang, K.R. (1999) Astrophysical Formulae: Radiation, Gas Processes, and High Energy Physics (Volume 1), 3rd Edition, Springer Publisher, June 1999.

    Google Scholar 

  • Lasota, J.P. (1999) “Unmasking Black Holes”, Scientific American, Vol. 280, No. 5. 1999, pp. 40–47.

    Google Scholar 

  • LaViolette, P.A. (2008) Secrets of Antigravity Propulsion—Tesla, UFOs, and Classified Aerospace Technology, Bear & Company Publisher, 2008.

    Google Scholar 

  • Layzer, D. (1975) “The Arrow of Time”, Scientific American, 1975, pp. 56–69.

    Google Scholar 

  • Lemonick, M.D. (2001) “No Time Like The Present”, Time International (South Pacific Edition), Issue 50, 17 December 2001.

    Google Scholar 

  • Lisi, A.G. and Weatherall, J.O. (2010) “A Geometric Theory of Everything”, Scientific American, Vol. 303, No. 6, December 2010, pp. 54–61.

    Google Scholar 

  • Long, K.F. (2009) “Fusion, Antimatter & the Space Drive: Charting a Path to the Stars”, J. British Interplanetary Society, Vol. 62, No. 3, March 2009, pp. 89–98.

    Google Scholar 

  • Maccone, C. (2008a) “Focal Probe to 550 or 1000 AU: A Status Review”, J. British Interplanetary Society, Vol. 61, No. 8, 2008, pp. 310–314.

    Google Scholar 

  • Maccone, C. (2008b) “Computer Tensor Codes to Design the Warp Drive”, J. British Interplanetary Society, Vol. 61, No. 9, 2008, pp. 358–363.

    Google Scholar 

  • MacDonald, F. (2015) “Independent Expert Confirms That the ‘Impossible’ EM Drive Actually Works”, sciencealert.com, 28 July 2015.

  • Mackey, M.C. (1991) Time’s Arrow: The Origins of Thermodynamic Behavior, Springer Publisher, December 1991.

    Google Scholar 

  • Maggiore, M., (2007), Gravitational Waves: Vol. 1: Theory and Experiments, Oxford University Press, Oxford, UK, 2007.

    Google Scholar 

  • Mallove, E.F. and Matloff, G.L. (1989) The Starflight Handbook: A Pioneer’s Guide to Interstellar Travel, John Wiley & Sons, June 1989.

    Google Scholar 

  • McCulloch, M.E. (2008) “Can the Flyby Anomalies Be Explained by a Modification of Inertia?”, J. British Interplanetary Society, Vol. 61, No. 9, 2008, pp. 373-378.

    Google Scholar 

  • Miller, A.L. (2008) Albert Einstein’s Special Theory of Relativity: Emergence (1905) and Early Interpretation (1905–1911), Springer Publisher, 1998 Edition, June 2008.

    Google Scholar 

  • Millis, M.G. (1996) “Challenge to Create the Space Drive”, NASA TM 107289, NASA Lewis Research Center, Cleveland, Ohio, prepared for the Interstellar Flight Symposium of the 15th Annual International Space Development Conference sponsored by the National Space Society York, New York, 23–24 May 1996.

    Google Scholar 

  • Millis, M.G. (1998) “NASA Breakthrough Propulsion Physics Program”, NASA TM-1998-208400, NASA Lewis Research Center, June 1998.

    Google Scholar 

  • Millis, M.G. (2004) “Prospects for Breakthrough Propulsion From Physics”, NASA/TM-2004-213082, NASA Glenn Research Center, Cleveland, Ohio, May 2004.

    Google Scholar 

  • Millis, M.G. (2005) “Assessing Potential Propulsion Breakthroughs”, NASA/TM-2005-213998, NASA Glenn Research Center, Cleveland, Ohio, December 2005.

    Google Scholar 

  • Millis, M.G. and Davis, E.W. (editors) (2009) Frontiers of Propulsion Sciences, AIAA Progress in Astronautics and Aeronautics, Vol. 227, AIAA, Reston, VA, January 2009.

    Google Scholar 

  • Minami, Y. (2008) “Preliminary Theoretical Considerations for Getting Thrust via Squeezed Vacuum”, J. British Interplanetary Society, Vol. 61, No. 8, 2008, pp. 315–321.

    Google Scholar 

  • Morris, M.S. and Thorne, K.S. (1988) “Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity”, Am. J. of Physics, Vol. 56, No. 5, May 1988, pp. 395–412.

    Google Scholar 

  • Morris, M.S., Yurtsever, U. and Thorne, K.S. (1989) Traversible Wormholes, Closed Timelike Curves, and the Averaged Weak Energy Condition, Abstracts of Contributed Papers, Twelfth International Conference on General Relativity and Gravitation (GR12), Boulder, Colorado, 02-07 July 1989, p. 247.

    Google Scholar 

  • Morris, M.S., Thorne, K.S. and Yurtsever, U. (1988) “Wormholes, Time Machines, and the Weak Energy Conditions”, Phys. Review Letters, Vol. 61, No. 13, 26 September 1988, pp. 1446–1449.

    Google Scholar 

  • Obousy, R.K. and Cleaver, G.B. (2008) “Warp Drive: A New Approach”, Journal of the British Interplanetary Society, Vol. 61, No. 9, January 2008, pp. 364–369.

    Google Scholar 

  • Oppenheimer, J.R. and Volkoff, G.M. (1939) “On Massive Neutron Cores”, Physical Review, Vol. 55, No. 374, 15 February 1939, p. 374.

    Google Scholar 

  • Overbye, D. (2016) “Gravitational Waves Detected, Confirming Einstein’s Theory”, The New York Times, 11 February 2016.

    Google Scholar 

  • Puthoff, H.E. (2010) “Advanced Space Propulsion Based on Vacuum (Spacetime Metric) Energy” Journal of the British Interplanetary Society, Vol. 63, No. 3, 2010, pp. 82–89.

    Google Scholar 

  • Quigg, C. (2008) “The Coming Revolutions in Particle Physics”, Scientific American, Vol. 298, No. 2, February 2008, pp. 46–53.

    Google Scholar 

  • Rahaman, F. (2014) The Special Theory of Relativity: A Mathematical Approach, Springer Publisher, 2014, Chapter 2.

    Google Scholar 

  • Raum, K., Koellner, M. Zeilinger, A., Arif, M. and Gähler, R. (1995) “Effective-Mass Enhanced Deflection of Neutrons in Noninertial Frames”, Phys. Rev. Letters, Vol. 74, No. 15, 10 April 1995, pp. 2859–2862.

    Google Scholar 

  • Rodrigo, E. (2010) The Physics of Stargates: Parallel Universes, Time Travel, and the Enigma of Wormhole Physics, Eridanus Press, September 2010.

    Google Scholar 

  • Rudolph, T.G. (2008) “Quantum Mechanics: The Speed of Instantly”, Nature, Vol. 454, No. 7206, 14 August 2008, pp. 831–832.

    Google Scholar 

  • Rueda, A. and Haisch, B. (1998) “Contribution to Inertial Mass by Reaction of the Vacuum Accelerated Motion”, Foundations of Physics, Vol. 28, No. 7, July 1998, pp. 1057–1108.

    Google Scholar 

  • Sagan, C. (1985) Contact, Simon & Schuster, October 1985.

    Google Scholar 

  • Salart, D., Baas, A., Branciard, C., Gisin, N. and Zbinden, H. (2008) “Testing the Speed of Spooky Action at a Distance”, Nature, Vol. 454, No. 7206, 25 August 2008, pp. 861–864.

    Google Scholar 

  • Sänger, E. (1956) “Die Erreichbarkeit der Fixsterne”, in Rendiconti del VII Congresso Internazionale Astronautico, Associazione Italiana Razzi (Proceedings of the VII International Astronautical Congress), Rome, 1956 [also in Mitteilungen der Landesgruppe Nordbayern der DGRR, pp. 97–113, 13 May 1958]

    Google Scholar 

  • Schwarzschild, K. (1916) “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Mathematik, Physik, und Technik, 1916, pp. 189.

    Google Scholar 

  • Smith, M.C., Okamoto, S., Yuan, H.B. and Liu, X.W. (2012) “The Assembly of the Milky Way and its Satellite Galaxies”, Research in Astronomy and Astrophysics, Vol. 12, No. 8, 2012, pp. 1021–1043.

    Google Scholar 

  • Smolin, L. (2004) “Atoms of Space and Time”, Scientific American, Vol. 290, No. 1, January 2004, pp. 66–75.

    Google Scholar 

  • Smolin, L. (2013) Time Reborn: From the Crisis in Physics to the Future of the Universe, Houghton Mifflin and Harcourt, New York, April 2013.

    Google Scholar 

  • Stuhlinger, E. (1964) Ion Propulsion for Space Flight, McGraw-Hill, New York, 1964.

    Google Scholar 

  • Tajmar, M. (2003) Advanced Space Propulsion Systems, Springer Publisher, New York, 2003.

    Google Scholar 

  • Tajmar, M. (2014) “Propellantless Propulsion with Negative Matter Generated by Electric Charges” AIAA Paper 2013-3913, presented at the 50th AIAA/ASME/SAE Joint Propulsion Conference, San Jose, CA, 14–17 July 2013.

    Google Scholar 

  • Tajmar, M. and Bertolami, O. (2005) “Hypothetical Gravity Control and Possible Influence on Space Propulsion”, J. Propulsion and Power, Vol. 21, No. 4, 2005, pp. 692–696.

    Google Scholar 

  • Tajmar, M. and Fiedler, G. (2015) “Direct Thrust Measurements of an EM Drive and Evaluation of Possible Side-Effects,” AIAA 2015-4083, 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, Orlando, Florida, 27–29 July 2015.

    Google Scholar 

  • Tajmar, M., Plesescu, F., Seifert, B., Schnitzer, R. and Vasilijevich, I. (2008a) “Search for Frame-Dragging-Like Signals Close to Spinning Superconductors”, in: Proc. 2nd Internat. Conf. on Time and Matter, edited by M.J. O’Loughlin, University of Nova Gorica Press, Nova Gorica, Slovenia, 2008, pp. 49–74.

    Google Scholar 

  • Tajmar, M., Plesescu, F., Seifert, B., Schnitzer, R., and Vasilijevich, I. (2008b) “Investigation of Frame-Dragging-Like Signals from Spinning Superconductors Using Laser Gyroscopes”, in: Proceedings of STAIF 2008, AIP Conference Proceedings CP 969, Albuquerque, New Mexico, 10–14 February 2008, pp. 1080–1090.

    Google Scholar 

  • Tanka, S. (1960) Personal communication.

    Google Scholar 

  • ten Boom, P.G. (2012) “The Pioneer Anomaly: An Inconvenient Reality or NASA’s 12 Year Misconception?”, Proceedings of the 12th Australian Space Science Conference, Melbourne, 24–26 September 2012.

    Google Scholar 

  • Thorne, K.S. (1995) Black Holes and Time Warp: Einstein’s Outrageous Legacy, Norton & Company, January 1995.

    Google Scholar 

  • Tsiolkovsky, K.E. (2004) Selected Works of Konstantin E. Tsiolkovsky, University Press of the Pacific, November 2004.

    Google Scholar 

  • Turyshev, S.G., Toth, V.T., Kinsella, G., Lee, S.C., Lok, S.M. and Ellis, J. (2012) “Support for the Thermal Origin of the Pioneer Anomaly”, Phys. Rev. Letter, Vol. 108, Issue 241101, 12 June 2012.

    Google Scholar 

  • Unnikrishnan, C.S. (2005) “On Einstein’s Resolution of the Twin Clock Paradox”, Current Science, Vol. 89, No. 12, 25 December 2005.

    Google Scholar 

  • Visser, M. (1989) “Traversable Wormholes: Some Simple Examples”, Physical Review D, Vol. 39, Issue 10, May 1989, pp. 3182–3184.

    Google Scholar 

  • Weiner, S. (2016) “Physicist Creates Lab-Sized ‘Black Hole’: The Experiment’s Results May Finally Prove that Hawking Radiation Exists”, Popular Mechanics, 26 August 2016.

    Google Scholar 

  • Weinert, F. (2004) The Scientist as Philosopher: Philosophical Consequences of Great Discoveries, Springer Science & Business Media, November 2004.

    Google Scholar 

  • Woodward, J.F. (2001) “Gravity, Inertia and Quantum Vacuum Zero Point Fields”, Foundations of Physics, Vol. 31, No. 5, May 2001, pp. 819–835.

    Google Scholar 

  • Woodward, J.F. (2004) “Flux Capacitors and the Origin of Inertia”, Foundations of Physics, Vol. 34, No. 10, October 2004, pp. 1475–1514.

    Google Scholar 

  • Woodward, J.F. (2013) Making Starships and Stargates—The Science of Interstellar Transport and Absurdly Benign Wormholes, Springer Publisher, New York, 2013.

    Google Scholar 

  • Yam, P. (1997) “Exploiting Zero-Point Energy”, Scientific American, Vol. 277, No. 6, December 1997, pp. 54–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Czysz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Czysz, P.A., Bruno, C., Chudoba, B. (2018). View to the Future and Exploration of Our Galaxy. In: Future Spacecraft Propulsion Systems and Integration. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54744-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54744-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54742-7

  • Online ISBN: 978-3-662-54744-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics