Diversity and the Phylogenetic Age of Cave Species

  • Horst Wilkens
  • Ulrike Strecker


A hot spot of biodiversity of aquatic cave species of very different biogeographic and systematic origins is located around the Gulf of Mexico. In continental Mexico, Neotropic and Nearctic cave faunas overlap north as well as south of the trans-Mexican volcanic belt and may even co-occur in the same cave. These species may also be associated with marine relics, closely related species that inhabit caves of peri-Carribean islands like Cuba and the Bahamas or of the Yucatán peninsula. Other cave species occurring in this area derive from deep sea forms or show close relationships to species occurring in subterranean water on the volcanic Eastern Atlantic island of Lanzarote. Representatives of the thermosbaenaceans and the remipedes, the latter having developed their centre of radiation in the peri-Carribean Islands, exclusively live in caves but exhibit circumtropical Tethyan distribution.


Cave Population Crystalline Cone Pleistocene Climatic Change Cave Fauna Anchialine Cave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bauer-Gottwein P, Gondwe BRN, Charvet G et al (2011) Review: the Yucatán Peninsula karst aquifer, Mexico. Hydrogeol J 19:507–524CrossRefGoogle Scholar
  2. Beddows PA (2003) Cave hydrology of the Caribbean Yucatan Coast, Bulletin 11. Association of Mexican Cave Studies, Houston, USA, pp 1–96Google Scholar
  3. Botello A, Alvarez F (2010) Genetic variation in the stygobitic shrimp Creaseria morleyi (Decapoda: Palaemonidae), evidence of bottlenecks and re-invasions in the Yucatan Peninsula. Biol J Linn Soc 99:315–325CrossRefGoogle Scholar
  4. Botello A, Iliffe TM, Alvarez F et al (2013) Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) based on mitochondrial and nuclear data. J Biogeogr 40(3):594–607. doi: 10.1111/jbi.12020 CrossRefGoogle Scholar
  5. Bussing WA (1985) Patterns of distribution of the Central American Ichthyofauna. In: Stehli FG, Webb SD (eds) The great American biotic interchange, vol 4. Plenum Press, New York, pp 453–473CrossRefGoogle Scholar
  6. Chamberlain SC (2000) Vision in hydrothermal vent shrimp. Philos Trans R Soc Lond B 355:1151–1154CrossRefGoogle Scholar
  7. Clark PU, Dyke AS, Shakun JD et al (2009) The last glacial maximum. Science 325:710–714CrossRefPubMedGoogle Scholar
  8. Frank MF, Johnsen S, Cronin TW (2012) Light and vision in the deep-sea benthos: II. Vision in deep-sea crustaceans. J Exp Biol 215:3344–3353CrossRefPubMedGoogle Scholar
  9. Gómez-Tuena A, Orozco-Esquivel MT, Ferrari L (2007) Igneous petrogenesis of the Trans-Mexican Volcanic Belt. In: Alaniz-Álvarez SA, Nieto-Samaniego ÁF (eds) Geology of México: celebrating the centenary of the geological society of México: geological society of America special paper 422, pp 129–181CrossRefGoogle Scholar
  10. García-Machado E, Hernández D, García-Debrás A et al (2011) Molecular phylogeny and phylogeography of the Cuban cave-fishes of the genus Lucifuga: evidence for cryptic allopatric diversity. Mol Phylogenet Evol 61:470–483CrossRefPubMedGoogle Scholar
  11. Greenfield DW, Greenfield TA, Woods RL (1982) A new subspecies of cave-dwelling pimelodid catfish, Rhamdia laticauda typhla from Belize, Central America. Brenesia 19(20):563–576Google Scholar
  12. Harms W (1921) Das rudimentäre Sehorgan eines Höhlendecapoden Munidopsis polymorpha Koelbel aus der Cueva de los Verdes auf der Insel Lanzarote. Zool Anz 52:101–114Google Scholar
  13. Hendrickson DA, Krejca JK, Rodríguez Martinez JM (2001) Mexican blindcats genus Prietella (Siluriformes: Ictaluridae): an overview of recent explorations. Environ Biol Fishes 62:315–337CrossRefGoogle Scholar
  14. Hoenemann M, Neiber MT, Humphreys W et al (2013) Phylogenetic analysis and systematic revision of Remipedia (Nectiopoda) from Bayesian analysis of molecular data. J Crustac Biol 33(5):603–661. doi: 10.1163/1937240X-00002179 CrossRefGoogle Scholar
  15. Humphreys WF (2000) Relict faunas and their derivation. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 417–432Google Scholar
  16. Hunter RL, Webb MS, Iliffe TM et al (2007) Phylogeny and historical biogeography of the cave-adapted shrimp genus Typhlatya (Atyidae) in the Caribbean Sea and western Atlantic. J Biogeogr 35:65–75. doi: 10.1111/j.1365-2699.2007.01767.x Google Scholar
  17. Iliffe TM, Botoşăneanu L (2006) The remarkable diversity of subterranean Cirolanidae (Crustacea: Isopoda) in the peri-Caribbean and Mexican Realm. Bull Inst R Sci Nat Belg 76:5–26Google Scholar
  18. Iliffe TM, Wilkens H, Parzefall J et al (1984) Marine lava cave fauna: composition, biogeography, and origins. Science 225:309–311CrossRefPubMedGoogle Scholar
  19. Iturralde-Vinent MA, García-Casco A, Rojas-Agramonte Y et al (2016) The geology of Cuba: a brief overview and synthesis. GSA Today 26(10):4–10. doi: 10.1130/GSATG296A.1 CrossRefGoogle Scholar
  20. Jaume D, Iliffe TM, Van der Ham JL (2013) A new Psammogammarus (Amphipoda: Eriopisidae) from anchialine pools on the Exuma Cays, Bahamas. Zootaxa 37(1):48–64CrossRefGoogle Scholar
  21. Joachim BL, Riesch R, Jeffery WR et al (2013) Pigment cell retention in cavernicolous populations of Poecilia mexicana (Poeciliidae). Bull Fish Biol 14:61–73Google Scholar
  22. Juberthie-Jupeau L (1976) Sur le système neurosécréteur du pédoncule oculaire d'un décapode souterrain microphthalme Typhlatya garciai Chace. Ann Spéléol 31:107–114Google Scholar
  23. Kindler P, Guillevic M, Baumgartner M et al (2014) Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Clim Past 10:887–902. doi: 10.5194/cp-10-887-2014 CrossRefGoogle Scholar
  24. Koenemann S, Iliffe TM (2013) Class Remipedia. In: von Vaupel Klein JC, Charmantier-Daures M, Schram FR (eds) Treatise on zoology—anatomy, taxonomy, biology, The Crustacea, vol 4A. Leiden, Brill, pp 125–177Google Scholar
  25. Kosswig C (1967) Über das Tempo evolutorischer Prozesse. Zoologische Beiträge 13:441–450Google Scholar
  26. Mejía-Ortíz LM (2005) Adaptations to cave life in decapods from Oaxaca. Association for Mexican Cave Studies Bulletin 15, Austin, p 170Google Scholar
  27. Mejía-Ortíz LM, Hartnoll RG, Viccon-Pale JA (2003) A new stygobitic crayfish from Mexico, Procambarus cavernicola (Decapoda: Cambaridae), with a review of cave-dwelling crayfishes in Mexico. J Crustac Biol 23(2):391–401CrossRefGoogle Scholar
  28. Mejía-Ortíz LM, Baldari F, López-Mejía M (2008) Macrobrachium sbordonii (Decapoda: Palaemonidae), A new stygobitic species of fresh water prawn from Chiapas, Mexico. Zootaxa 1814:49–57Google Scholar
  29. Meyer-Rochow VB, Juberthie-Jupeau L (1987) An electron microscope study of the eye of the cave mysid Heteromysoides cotti from the island of Lanzarote (Canary Islands). Stygologia 3:24–34Google Scholar
  30. Möller PR, Schwarzhans W, Iliffe TM et al (2006) Revision of the Bahamian cave-fishes of the genus Lucifuga (Ophidiiformes, Bythitidae), with description of a new species from islands on the Little Bahama Bank. Zootaxa 1223:23–46Google Scholar
  31. Neiber MT, Hartke TR, Stemme T et al (2011) Global biodiversity and phylogenetic evaluation of Remipedia (Crustacea). PLoS One 6(5):e19627. doi: 10.1371/journal.pone.0019627 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Olesen J, Martinsen SV, Iliffe TM et al (2014) Remipedia. In: Martin J, Olesen J, Høeg J (eds) Atlas of crustacean larvae. John Hopkins University Press, Baltimore, pp 84–89Google Scholar
  33. Palacios M, Voelker G, Rodriguez LA et al (2016) Phylogenetic analyses of the subgenus Mollienesia (Poecilia, Poeciliidae, Teleostei) reveal taxonomic inconsistencies, cryptic biodiversity, and spatio-temporal aspects of diversification in Middle America. Mol Phylogenet Evol 103:230–244CrossRefPubMedGoogle Scholar
  34. Parzefall J, Wilkens H (1972) Artbildung bei Höhlenfischen. Zoomorphology 73:63–79Google Scholar
  35. Perdices A, Bermingham E, Montilla A et al (2002) Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America. Mol Phylogenet Evol 25:172–189CrossRefPubMedGoogle Scholar
  36. Perdices A, Doadrio I, Bermingham E (2005) Evolutionary history of the synbranchid eels (Teleostei: Synbranchidae) in Central America and the Caribbean islands inferred from their molecular phylogeny. Mol Phylogenet Evol 37:460–473CrossRefPubMedGoogle Scholar
  37. Pérez-Moreno JL, Iliffe TM, Bracken-Grissom HD (2016) Life in the underworld: Anchialine cave biology in the era of speleogenomics. Int J Speleol 45(2):149–170CrossRefGoogle Scholar
  38. Peters N, Peters G, Parzefall J et al (1973) Über degenerative und konstruktive Merkmale bei einer phylogenetisch jungen Höhlenform von Poecila sphenops. Int Rev Gesamten Hydrobiol 58:417–436CrossRefGoogle Scholar
  39. Porter ML, Dittmar K, Pérez-Losada M (2007) How long does evolution of the troglomorphic form take? Estimating divergence times in Astyanax mexicanus. Acta Carsol 36(1):173–182CrossRefGoogle Scholar
  40. Pregill GK, Olson SL (1981) Zoogeography of West Indian vertebrates in relation to Pleistocene climatic cycles. Annu Rev Ecol Syst 12:75–98CrossRefGoogle Scholar
  41. Rasmussen TL, Thomsen E, Moro M (2016) North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate. Sci Rep 6:1–12. doi: 10.1038/srep20535 CrossRefGoogle Scholar
  42. Schemmel C (1977a) Zur Morphologie und Funktion der Sinnesorgane von Typhliasina pearsei (Hubbs) (Ophidioidea, Teleostei). Zoomorphology 87:191–202CrossRefGoogle Scholar
  43. Stanley SM, Campbell D (1981) Neogene mass extinction of Western Atlantic molluscs. Nature 293:457–459CrossRefGoogle Scholar
  44. Stegner MEJ, Stemme T, Iliffe TM et al (2015) The brain in three crustaceans from cavernous darkness. BMC Neurosci 16:1–28. doi: 10.1186/s12868-015-0138-6 CrossRefGoogle Scholar
  45. Weber A (2003) Taxonomie und Artstatus höhlenbewohnender und oberirdischer Welse der Gattung Rhamdia (Pimelodidae, Teleostei). Dissertation, University of HamburgGoogle Scholar
  46. Weber A, Wilkens H (1998) Rhamdia macuspanensis: a new species of troglobitic pimelodid catfish (Siluriformes, Pimelodidae) from a cave in Tabasco, Mexico. Copeia:998–1004Google Scholar
  47. Weber A, Allegrucci G, Sbordoni V (2003) Rhamdia laluchensis, a new species of troglobitic catfish (Siluriformes, Pimelodidae) from Chiapas, Mexico. Ichthyol Explor Freshwaters 14:273–280Google Scholar
  48. Weyl R (1964) Die paläogeographische Entwicklung des Mittelamerikanisch-Westindischen Raumes. Geol Rundsch 54:1213–1240CrossRefGoogle Scholar
  49. Wilhelm O, Ewing M (1972) Geology and history of the Gulf of Mexico. Geol Soc Am Bull 83:575–600CrossRefGoogle Scholar
  50. Wilkens H (1972) Zur phylogenetischen Rückbildung des Auges Cavernicoler: Untersuchungen an Anoptichthys jordani (=Astyanax mexicanus) Characidae, Pisces. Ann Spéliol 27:411-432Google Scholar
  51. Wilkens H (1973) Über das phylogenetische Alter von Höhlentieren. Untersuchungen über die cavernicole Süßwasserfauna Yucatans. Z Zool Syst Evol 11:49–60CrossRefGoogle Scholar
  52. Wilkens H (1979) Reduktionsgrad und phylogenetisches Alter: Ein Beitrag zur Besiedlungsgeschichte der Limnofauna Yukatans. Z Zool Syst Evol 17:262–272CrossRefGoogle Scholar
  53. Wilkens H (1982) Regressive evolution and phylogenetic age: the history of colonization of freshwaters of Yucatan by fish and Crustacea. Texas Mem Mus Bull 28:237–243Google Scholar
  54. Wilkens H (1986) The tempo of regressive evolution: studies of the eye reduction in stygobiont fishes and decapod crustaceans of the Gulf Coast and Western Atlantic region. Stygologia 2:139–143Google Scholar
  55. Wilkens H (2001) Convergent adaptations to cave life in the Rhamdia laticauda catfish group (Pimelodidae, Teleostei). Environ Biol Fishes 62:251–261CrossRefGoogle Scholar
  56. Wilkens H, Strecker U, Yager J (1989) Eye reduction and phylogenetic age in ophidiiform cave fish. Z Zool Syst Evol 27:126–134CrossRefGoogle Scholar
  57. Wilkens H, Junge P, Langecker TG (1991) Speciation of troglobites: studies in the San Antonio cave (Oaxaca, Mexico). Int J Speleol 20:1–13CrossRefGoogle Scholar
  58. Wilkens H, Iliffe TM, Oromí P et al (2009) The Corona lava tube, Lanzarote: geology, habitat diversity and biogeography. Mar Biodivers 39:155–167. doi: 10.1007/s12526-009-0019-2 CrossRefGoogle Scholar
  59. Wilkens H, Parzefall J (1974) Die Ökologie der Jameos del Agua (Lanzarote). Zur Entwicklung limnischer Höhlentiere aus marinen Vorfahren. Ann Spéléol 29:419–434Google Scholar
  60. Yager J (1981) Remipedia, a new class of Crustacea from a marine cave in the Bahamas. J Crustac Biol 1(3):328–333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Horst Wilkens
    • 1
  • Ulrike Strecker
    • 1
  1. 1.Centrum für Naturkunde—Zoologisches MuseumUniversität HamburgHamburgGermany

Personalised recommendations