Advertisement

The Role of Rudimentation in Evolution

  • Horst Wilkens
  • Ulrike Strecker
Chapter

Abstract

Processes of regression and rudimentation are deeply involved in the evolution of life and are as important as constructive evolution. They occur in every taxonomic group and concern morphological, behavioural, as well as physiological traits. For example, whales have reduced their hind legs and the pelvic girdle. The ratite birds have convergently abandoned the ability to fly and exhibit reduced wings and sternal carina. In addition, the delicate feather structure is broken down. In the Pacific island of Tahiti, where no insectivore bats exist, noctuid moths have lost the acoustic startle response. Even the gustatory system may selectively lose taste components (e.g. sweet in cats; bitter, sweet, and umami in penguins; or umami in the giant panda after changing their diet during evolution). However, from the view of human beings relying on sight as the dominant sense, the most bizarre and striking examples for rudimentation—often also characterized as degeneration or regression of traits—are provided by the loss of eyes and dark pigmentation in species living in the continuous absolute darkness of subterranean habitats like caves.

Keywords

Giant Panda Acoustic Startle Response Pelvic Girdle Noctuid Moth Retinal Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abel O (1908) Die Morphologie der Hüftbeinrudimente der Cetaceen. LXXXI. Band der Denkschrift der Mathematisch-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften, vol 81, pp 138–195Google Scholar
  2. Crish SD, Dengler-Crish CM, Catania KC (2006) Central visual system of the naked mole-rat (Heterocephalus glaber). Anat Rec A Discov Mol Cell Evol Biol 288(2):205–212CrossRefPubMedGoogle Scholar
  3. Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, New YorkGoogle Scholar
  4. Culver DC, Wilkens H (2000) Critical review of the relevant theories of the evolution of subterranean animals. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 381–398Google Scholar
  5. Deimer P (1977) Der rudimentäre Extremitätengürtel des Pottwals (Physeter macrocephalus Linnaeus, 1758), seine Variabilität und Wachstumsallometrie. Z Säugetierkd 42:88–101Google Scholar
  6. Emerling CA, Springer MS (2014) Eyes underground: regression of visual protein networks in subterranean mammals. Mol Phylogenet Evol 78:260–270CrossRefPubMedGoogle Scholar
  7. Fernandes CS, Batalha MA, Bichuette ME (2016) Does the cave environment reduce functional diversity? PLoS One 11(3):e0151958. doi: 10.1371/journal.pone.0151958 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fullard JH, Ratcliffe JM, ter Hofstede H (2007) Neural evolution in the bat-free habitat of Tahiti: partial regression in an anti-predator auditory system. Biol Lett 3:26–28CrossRefPubMedGoogle Scholar
  9. Fullard JH, ter Hofstede HM, Ratcliffe JM et al (2010) Release from bats: genetic distance and sensoribehavioural regression in the Pacific field cricket, Teleogryllus oceanicus. Naturwissenschaften 97:53–61. doi: 10.1007/s00114-009-0610-1 CrossRefPubMedGoogle Scholar
  10. Gnaspini P, Trajano E (2000) Guano communities in tropical caves. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 251–268Google Scholar
  11. Iliffe TM (2000) Anchialine cave ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 59–76Google Scholar
  12. Juan C, Guzik MT, Jaume D et al (2010) Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Mol Ecol 19:3865–3880CrossRefPubMedGoogle Scholar
  13. Juberthie C (2000) Generalities and the diversity of the karstic and pseudokarstic hypogean habitats in the world. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 17–39Google Scholar
  14. Juberthie C, Decu V (eds) (1994) Encyclopaedia Biospeologica. I. Société de Biospéologie. Moulis, FranceGoogle Scholar
  15. Li X, Li W, Wang H et al (2005) Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genet 1(1):27–35CrossRefPubMedGoogle Scholar
  16. Mitchell RW, Russell WH, Elliott WR (1977) Mexican eyeless characin fishes, genus Astyanax: environment, distribution, and evolution, vol 12. Texas Tech Press, Lubbock, pp 1–89. Special publications of the Museum Texas Tech UniversityGoogle Scholar
  17. Mitchell KJ, Llamas B, Soubrier J et al (2014) Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science 344:898–900CrossRefPubMedGoogle Scholar
  18. Nikitina NV, Maughan-Brown B, O’Riain MJ et al (2004) Postnatal development of the eye in the naked mole rat (Heterocephalus glaber). Anat Rec A Discov Mol Cell Evol Biol 277(2):317–337CrossRefPubMedGoogle Scholar
  19. Pérez-Moreno JL, Iliffe TM, Bracken-Grissom HD (2016) Life in the underworld: Anchialine cave biology in the era of speleogenomics. Int J Speleol 45(2):149–170CrossRefGoogle Scholar
  20. Phillips MJ, Gibb GC, Crimp EA et al (2010) Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst Biol 59(1):90–107CrossRefPubMedGoogle Scholar
  21. Proudlove GS (2010) Biodiversity and distribution of the subterranean fishes of the world. In: Trajano E, Bicuette ME, Kapoor BG (eds) Biology of subterranean fishes. Science Publishers, New Hampshire, pp 65–80Google Scholar
  22. Thewissen JGM, Bajpai S (2001) Whale origins as a poster child of macroevolution. BioScience 51(12):1037–1049CrossRefGoogle Scholar
  23. Wilkens H, Iliffe TM, Oromí P et al (2009) The Corona lava tube, Lanzarote: geology, habitat diversity and biogeography. Mar Biodivers 39:155–167. doi: 10.1007/s12526-009-0019-2 CrossRefGoogle Scholar
  24. Zhao H, Yang J-R, Xu H et al (2010) Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo. Mol Biol Evol 27(12):2669–2673. doi: 10.1093/molbev/msq153 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Zhao H, Li J, Jianzhi Z (2015) Molecular evidence for the loss of three basic tastes in penguins. Curr Biol 25(4):141–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Horst Wilkens
    • 1
  • Ulrike Strecker
    • 1
  1. 1.Centrum für Naturkunde—Zoologisches MuseumUniversität HamburgHamburgGermany

Personalised recommendations