GTS Families for the Flexible Composition of Graph Transformation Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10202)

Abstract

Morphisms between graph-transformation systems (GTSs) have been successfully used for the refinement, reuse, and composition of GTSs. All these uses share a fundamental problem: to be able to define a morphism, source and target GTSs need to be quite similar in their structure (in terms of both the type graphs and the set of rules and their respective structures). This limits the applicability of these approaches by excluding a wide range of mappings that would intuitively be accepted as meaningful, but that cannot be captured formally as a morphism. Some researchers have attempted to introduce some flexibility, but these attempts either focus only on the type graphs (e.g., Kleisli morphisms between type graphs) or only support specific forms of deviation (e.g., supporting sub-typing in type graphs through clan morphisms). In this work, we introduce the notion of GTS families, which provide a general mechanism for explicitly expressing the amount of acceptable adaptability of the involved GTSs so that the intended morphisms can be defined. On this basis, we demonstrate how GTS families that are extension preserving can be used to enable flexible GTS amalgamation.

References

  1. 1.
    Ehrig, H.: Introduction to the algebraic theory of graph grammars. In: Claus, V., Ehrig, H., Rozenberg, G. (eds.) 1st Graph Grammar Workshop, vol. 73, LNCS, pp. 1–69. Springer, Heidelberg (1979)Google Scholar
  2. 2.
    Engels, G., Heckel, R., Taentzer, G., Ehrig, H.: A combined reference model- and view-based approach to system specification. Int. J. Software Eng. Knowl. Eng. 7(4), 457–477 (1997)CrossRefGoogle Scholar
  3. 3.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Große-Rhode, M., Parisi-Presicce, F., Simeoni, M.: Spatial and temporal refinement of typed graph transformation systems. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 553–561. Springer, Heidelberg (1998). doi:10.1007/BFb0055805 CrossRefGoogle Scholar
  5. 5.
    Engels, G., Heckel, R., Cherchago, A.: Flexible interconnection of graph transformation modules. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 38–63. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31847-7_3 CrossRefGoogle Scholar
  6. 6.
    de Lara, J., Guerra, E.: From types to type requirements: Genericity for model-driven engineering. SoSyM 12(3), 453–474 (2013)Google Scholar
  7. 7.
    Durán, F., Zschaler, S., Troya, J.: On the reusable specification of non-functional properties in DSLs. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 332–351. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36089-3_19 CrossRefGoogle Scholar
  8. 8.
    Durán, F., Moreno-Delgado, A., Orejas, F., Zschaler, S.: Amalgamation of domain specific languages with behaviour. J. Log. Algebraic Methods Program. (2015)Google Scholar
  9. 9.
    Baldan, P., Corradini, A., Dotti, F.L., Foss, L., Gadducci, F., Ribeiro, L.: Towards a notion of transaction in graph rewriting. Electr. Notes Theor. Comput. Sci. 211, 39–50 (2008)CrossRefMATHGoogle Scholar
  10. 10.
    Taentzer, G.: A visual modeling framework for distributed object computing. In: Jacobs, B., Rensink, A. (eds.) FMOODS 2002. IFIP, vol. 81, pp. 263–278. Springer, Boston, MA (2002). doi:10.1007/978-0-387-35496-5_18 CrossRefGoogle Scholar
  11. 11.
    de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed graph transformation with node type inheritance. Theoret. Comput. Sci. 376, 139–163 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli categories. In: Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 163–177. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28872-2_12 CrossRefGoogle Scholar
  13. 13.
    de Lara, J., Guerra, E.: Towards the flexible reuse of model transformations: A formal approach based on graph transformation. J. Log. Algebraic Methods Program. 83(5–6), 427–458 (2014)CrossRefMATHGoogle Scholar
  14. 14.
    Große-Rhode, M., Parisi Presicce, F., Simeoni, M.: Refinements of graph transformation systems via rule expressions. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 368–382. Springer, Heidelberg (2000). doi:10.1007/978-3-540-46464-8_26 CrossRefGoogle Scholar
  15. 15.
    Harman, M.: The current state and future of search based software engineering. In: Briand, L.C., Wolf, A.L. (eds.) International Conference on Software Engineering, ISCE 2007, Workshop on the Future of Software Engineering, FOSE 2007, 23–25 May, Minneapolis, MN, USA, 342–357. IEEE Computer Society (2007)Google Scholar
  16. 16.
    Durán, F., Orejas, F., Zschaler, S.: Behaviour protection in modular rule-based system specifications. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 24–49. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37635-1_2 CrossRefGoogle Scholar
  17. 17.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations, vol. 1: Foundations, World Scientific (1997)Google Scholar
  18. 18.
    Parisi-Presicce, F.: Transformations of graph grammars. In: Cuny, J., Ehrig, H., Engels, G., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 428–442. Springer, Heidelberg (1996). doi:10.1007/3-540-61228-9_103 CrossRefGoogle Scholar
  19. 19.
    Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transformation. ECEASST 30 (2010)Google Scholar
  20. 20.
    Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symbolic Comput. 46(3), 294–315 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Taentzer, G., Rensink, A.: Ensuring structural constraints in graph-based models with type inheritance. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 64–79. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31984-9_6 CrossRefGoogle Scholar
  22. 22.
    Cuadrado, J.S., Guerra, E., de Lara, J.: Flexible model-to-model transformation templates: an application to ATL. J. Object Technol. 11(2), 4:1–4:28 (2012)CrossRefGoogle Scholar
  23. 23.
    Guy, C., Combemale, B., Derrien, S., Steel, J.R.H., Jézéquel, J.-M.: On model subtyping. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 400–415. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31491-9_30 CrossRefGoogle Scholar
  24. 24.
    Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02674-4_3 CrossRefGoogle Scholar
  25. 25.
    Hegedüs, Á., Horváth, Á., Ráth, I., Varró, D.: A model-driven framework for guided design space exploration. In: Proceedings of the 26th IEEE/ACM International Conference Automated Software Engineering (ASE 2011), pp. 173–182, November 2011Google Scholar
  26. 26.
    Zschaler, S., Mandow, L.: Towards model-based optimisation: Using domain knowledge explicitly. In: Proceedings of Workshop on Model-Driven Engineering, Logic and Optimization (MELO 2016) (2016)Google Scholar
  27. 27.
    Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model transformation technology. In: Proceedings of the 1st North American Search Based Software Engineering Symposium (NasBASE 2015) (2015) (Preprint). http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf
  28. 28.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: All About Maude, vol. 4350. LNCS. Springer, Heidelberg (2007)Google Scholar
  29. 29.
    Brim, L., Gruska, J., Zlatuška, J. (eds.): MFCS 1998. LNCS, vol. 1450. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUK
  2. 2.Dpto. de Lenguajes y Ciencias de la ComputaciónUniversity of MálagaMálagaSpain

Personalised recommendations