Skip to main content

Failure of Generally Accepted Classical Traffic Flow Theories

  • Chapter
  • First Online:
Breakdown in Traffic Networks
  • 1215 Accesses

Abstract

Traffic researchers have developed a huge number of traffic theories for optimization and control of traffic and transportation networks. In particular, to generally accepted fundamentals and methodologies of traffic and transportation theory belong to the Lighthill-Whitham-Richards (LWR) model and the General Motors (GM) model class. These classical theories explain many real traffic flow phenomena. In this Chapter, we show that although these classical traffic flow models exhibit many important achievements, the classical models are inconsistent with the empirical nucleation nature of traffic breakdown at highway bottlenecks. Because the classical models and theories have failed in the explanation of the empirical fundamental of transportation science, the use of the classical approaches for a study of the reliability of applications of intelligent transportation systems (ITS) leads usually to invalid conclusions for real traffic. Moreover, ITS based on these classical traffic flow theories and models cannot also be used for reliable traffic control and dynamic optimization of traffic and transportation networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a huge number of publications devoted to measurements of flow–density (fundamental diagram), speed-density, speed–space-gap, and link-travel-time–flow relationships (see, e.g., a review by Hall in [163]).

  2. 2.

    While propagating though the bottleneck, the wide moving jam can cause a variety of diverse effects of congested pattern formation at the bottleneck found out in 1999–2001 in the models of the GM model class by Helbing, Treiber et al. [222, 507]. This is because the free flow at the bottleneck is in a metastable state with respect to an F → J transition. These diverse effects of congested pattern formation, which are considered in details in papers of Helbing and Treiber et al. [464, 465, 511], in the review by Helbing [213] and the book by Treiber and Kesting [508, 509], are out of scope of the book under consideration. The reason of this is as follows. All the effects of the congested pattern formation at road bottlenecks found with the simulations of the models of the GM model class are associated with the metastability of free flow at the bottleneck with respect to the F → J transition. Contrarily, in real traffic as proven in Chap. 3, rather than the F → J transition, the metastability of free flow at the bottleneck with respect to the F → S transition is responsible for traffic breakdown at a highway bottleneck in real traffic (see Sect. 4.5.1). For this reason, all theoretical results of the congested pattern formation at road bottlenecks found by Helbing, Treiber, Kesting et al. as well as by other authors in many different traffic flow models of the GM model class (see e.g. [206222, 224231, 464, 465, 504, 505, 507509, 511]) are invalid for real traffic. This critical conclusion has been considered in more detailed in Sec. 10.3.10 and 10.3.11 of the book [269] (see also Sects. 4.7,  4.9.1, and 4.11.4 below).

  3. 3.

    Some of the models belonging to the GM model class like the OV model [2830] and IDM (intelligent driving model) [213, 507509] have a unique speed–density relationship, whereas the initial GM model of Herman, Montroll, Potts, and Rothery does not have [233]. Rather than a relation between steady speed and density in a model, the common feature of any traffic flow model belonging to the GM model is a free flow instability that causes a growing wave of vehicle speed reduction propagating upstream in traffic flow. Note that to describe traffic beyond of instabilities, Gazis, Herman and Rothery made a further development of the GM model in which steady-state solutions lie on a one-dimensional curve in the flow-density plane (fundamental diagram) [171] (see the review by Nagel et al. [380] for more details).

  4. 4.

    Empirical characteristic parameters of wide moving jam propagation will be considered in more details in Sect. 8.3.1

  5. 5.

    In simulations, this broad spread of traffic data is usually associated with different driver behavioral characteristics (heterogeneous flow of different drivers and vehicles) used in a traffic flow model as well as with complex dynamics of moving jams and other dynamic spatiotemporal effects in congested traffic, rather than with steady states of a traffic flow model.

  6. 6.

    Recall that in Sect. 1.12 to distinguish classical traffic flow models from three-phase traffic flow models, we have called traffic flow models in the frameworks of the LWR model, Daganzo’s cell-transmission model, traffic flow models of the GM model class as well as any other traffic flow models that can be considered a combination of these classical approaches to traffic flow modeling as “two-phase traffic flow models”. In other words, in the book the term a two-phase traffic flow model is a synonym of the term a classical traffic flow model and the term a classical traffic flow theory.

  7. 7.

    In the books [268, 269], for two-phase traffic flow models we have used the term traffic flow models in the framework of the “fundamental diagram approach”. We do not use the term the fundamental diagram approach any more. It occurs that the use of the term the fundamental diagram approach leads to confusions for many authors that have begun to work in the framework of the three-phase theory. One of the reasons for this confusion is as follows. As shown in Sec. 12.1 of the book [269], there can be derived three-phase traffic flow models that exhibit a fundamental diagram for steady state model solutions. Therefore, instead of the term the fundamental diagram approach, as mentioned in footnote 6, in this book for classical traffic flow models and theories we use the term two-phase traffic flow models.

  8. 8.

    The exclusion is Chap. 8, in which we will explain why the three-phase theory is incommensurable with classical traffic flow theories.

  9. 9.

    See the explanation of the term two-phase traffic flow model in Sect. 1.12.

  10. 10.

    There are many theoretical works in which rather than a flow-rate drop observed during traffic breakdown at a highway bottleneck (Sect. 2.2.2) as “capacity drop” another flow-rate drop q cr (J)q out shown in Fig. 4.9 is considered. This application of the term “capacity drop” is incorrect for another reason. To explain this critical statement, we should recall that traffic breakdown occurs at the effective location of a highway bottleneck (see explanations of the effective location of the bottleneck in Sect. 3.4.4). In Fig. 4.9, free flow states together with the line J that characterizes some features of wide moving jams have been presented. As explained in details in Sec. 15.4 of the book [268], rather than traffic breakdown at the bottleneck, the free flow states together with the line J shown in Fig. 4.9 explain the Koshi’s reverse-λ fundamental diagram found by Koshi et al. in empirical data [298]. In Sec. 15.4 of the book [268], it has also been shown that the Koshi’s reverse-λ fundamental diagram can be measured at road locations at which wide moving jams have already been formed within a congested pattern localized at a highway bottleneck. The road locations are several kilometers upstream of the effective bottleneck location at which traffic breakdown has initially occurred. In the empirical example of a congested pattern shown in Fig. 4.2a, these road locations at which the Koshi’s reverse-λ fundamental diagram can be measured (locations x = 0 and x = 1. 5 km in Fig. 4.2b) are about 5 km upstream of the effective location of the bottleneck at which traffic breakdown has been observed (location x = 6. 4 km in Fig. 4.2b). Thus, the flow-rate drop between the maximum flow rate that is reachable in free flow and the outflow rate in the wide moving jam outflow (Figs. 4.2b (x = 0 and x = 1. 5 km) and 4.9) has in general no relation to a flow-rate drop observed [33, 191] during traffic breakdown at the effective location of traffic breakdown at a highway bottleneck (Sect. 2.2.2).

  11. 11.

    This can be seen on Fig. 7.7 (b, c) of the book [269] in which the same empirical data as that studied in [464, 465] have been presented.

References

  1. M. Abdel-Aty, J. Dilmore, A. Dhindsa, Accid. Anal. Prevent. 38, 335–345 (2006)

    Article  Google Scholar 

  2. K. Abdelghany, D. Valdes, A. Abdelfatah, H.S. Mahmassani, Transp. Res. Rec. 1667, 67–76 (1999)

    Article  Google Scholar 

  3. H. Abouaïssa, M. Fliess, C. Join, Int. J. Contr., doi: 10.1080/00207179.2016.1193223 (2016)

    Google Scholar 

  4. L. D’Acierno, M. Gallo, B. Montella, Europ. J. Oper. Res. 217, 459–469 (2012)

    Article  Google Scholar 

  5. M. van Aerde, H. Rakha, INTEGRATION ©Release 2.30 for Windows: User’s Guide - Volume I: Fundamental Model Features (M. Van Aerde & Assoc., Blacksburg, 2007)

    Google Scholar 

  6. M. van Aerde, H. Rakha, INTEGRATION ©Release 2.30 for Windows: User’s Guide - Volume II: Advanced Model Features (M. Van Aerde & Assoc., Blacksburg, 2007)

    Google Scholar 

  7. K. Aghabayk, M. Sarvi, W. Young, J. Adv. Transp. 50, 1432–1446 (2016)

    Google Scholar 

  8. S.D. Ahipas, R. Meskarian, T.L. Magnanti, K. Natarajan, Transp. Res. B 81, 333–354 (2015)

    Article  Google Scholar 

  9. T. Akamatzu, T. Nagae, in [13] (2007), pp. 87–110

    Google Scholar 

  10. P. Allaby, B. Hellinga, M. Bullock, IEEE Trans. Intell. Transp. Syst. 8, 671–680 (2006)

    Article  Google Scholar 

  11. B.L. Allen, G.F. Newell, Transp. Sci. 10, 227–242 (1976)

    Article  Google Scholar 

  12. B.L. Allen, G.F. Newell, Transp. Sci. 10, 243–268 (1976)

    Article  Google Scholar 

  13. R.E. Allsop, M.G.H. Bell, B.G. Heydecker (eds.), Transportation and Traffic Theory 2007 (Elsevier Science, Amsterdam, 2007)

    Google Scholar 

  14. J. Al-Obaedi, S. Yousif, IEEE Trans. ITS 13, 296–306 (2012)

    Google Scholar 

  15. M. Amirgholy, E.J. Gonzales, Transp. Res. B (2016), doi.org/10.1016/j.trb.2015.11.006

    Google Scholar 

  16. C. Appert-Rolland, F. Chevoir, P. Gondret, S. Lassarre, J.-P. Lebacque, M. Schreckenberg (eds.), Traffic and Granular Flow’07 (Springer, Heidelberg, 2009)

    Google Scholar 

  17. B. van Arem, C. van Driel, R. Visser, IEEE Trans. Intell. Transp. Syst. 7, 429–436 (2006)

    Article  Google Scholar 

  18. B. van Arem, J.H. Hogema, S.A. Smulders, in Proceedings of 3rd World Congress on Intelligent Transport Systems 1996

    Google Scholar 

  19. B. van Arem, A.P. de Vos, M.J. Vanderschuren, “The microscopic traffic simulation model MIXIC 1.3”, TNO-Report, INRO-VVG 1997–02b (Delft, 1997)

    Google Scholar 

  20. M. Ardelt, C. Coester, N. Kaempchen, IEEE Trans. ITS 13, 1576–1585 (2012)

    Google Scholar 

  21. E.D. Arnold, “Ramp Metering: A Review of the Literature” (Virginia Transportation Research Council, 1998)

    Google Scholar 

  22. P.J. Athol, A.G.R. Bullen, Highway Res. Rec. 456, 50–54 (1973)

    Google Scholar 

  23. A. Aungsuyanon, D. Boyce, B. Ran, in Proc. TRB 92nd Annual Meeting, Paper # 13-1423 (TRB, Washington DC, 2013)

    Google Scholar 

  24. A. Aw, M. Rascle, SIAM J. Appl. Math. 60, 916–938 (2000)

    Article  MathSciNet  Google Scholar 

  25. H.M.A. Aziz, S.V. Ukkusuri, Transp. Res. Rec. 2311, 73–84 (2012)

    Article  Google Scholar 

  26. C. Backfrieder, G. Ostermayer, C.F. Mecklenbräuker, IEEE Trans. ITS 18, 349–363 (2017)

    Google Scholar 

  27. M. Bahram, Z. Ghandeharioun, P. Zahn, M. Baur, W. Huber, F. Busch, 17th IEEE Intern. Conference on ITS (ITSC) 2014, pp. 1752–1757

    Google Scholar 

  28. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Jpn. J. Appl. Math. 11, 203–223 (1994)

    Article  Google Scholar 

  29. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  30. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, J. Phys. I France 5, 1389–1399 (1995)

    Article  Google Scholar 

  31. J.H. Banks, Transp. Res. Rec. 1510, 1–10 (1995)

    Google Scholar 

  32. J.H. Banks, Transp. Res. Rec. 1225, 53–60 (1989)

    Google Scholar 

  33. J.H. Banks, Transp. Res. Rec. 1287, 20–28 (1990)

    Google Scholar 

  34. J.H. Banks, “Evaluation of the Two-Capacity Phenomenon as a Basis for Ramp Metering”, Final Report, Civil Engineering Report Series 9002 (San Diego State University, San Diego, CA, 1990)

    Google Scholar 

  35. J.H. Banks, Transp. Res. Rec. 1320, 234–241 (1991)

    Google Scholar 

  36. J.H. Banks, Transp. Res. Rec. 1320, 83–90 (1991)

    Google Scholar 

  37. J.H. Banks, Transp. Res. Rec. 1394, 17–25 (1993)

    Google Scholar 

  38. J.H. Banks, Transp. Res. Rec. 1678, 128–134 (1999)

    Article  Google Scholar 

  39. J.H. Banks, Transp. Res. Rec. 1802, 225–232 (2002)

    Article  Google Scholar 

  40. J. Barceló, J. Casas, Oper. Res. Comp. Sci. Interf. Ser. 31, 57–98 (2005)

    Google Scholar 

  41. J. Barceló, E. Codina, J. Casas, J.L. Ferrer, D. Garcia, J. Intel. Robotic Sys. 41, 173–203 (2005)

    Google Scholar 

  42. R. Barlović, T. Huisinga, A. Schadschneider, M. Schreckenberg, Phys. Rev. E 66, 046113 (2002)

    Article  Google Scholar 

  43. R. Barlović, L. Santen, A. Schadschneider, M. Schreckenberg, Eur. Phys. J. B 5, 793–800 (1998)

    Article  Google Scholar 

  44. L.D. Baskar, B. De Schutter, H. Hellendoorn, IEEE Trans. ITS 13, 838–847 (2012)

    Google Scholar 

  45. S. Becker, M. Bork, H.T. Dorissen, G. Geduld, O. Hofmann, K. Naab, G. Nöcker, P. Rieth, J. Sonntag, in Proceedings of the 1st World Congress on Applications of Transport Telematics and Intelligent Vehicle-Highway Systems (1994), pp. 1828–1835

    Google Scholar 

  46. S. Becker, M. Bork, H.T. Dorissen, G. Geduld, O. Hofmann, K. Naab, G. Nöcker, P. Rieth, J. Sonntag, in Proceedings of the 1st World Congress on Applications of Transport Telematics and Intelligent Vehicle-Highway Systems (1994), pp. 1836–1843

    Google Scholar 

  47. N. Bekiaris-Liberis, C. Roncoli, M. Papageorgiou, IEEE Trans. ITS 17, 3484–3497 (2016)

    Google Scholar 

  48. M. Behrisch, L. Bieker, J. Erdmann, D. Krajzewicz, “SUMO - Simulation of Urban MObility: An Overview”, in SIMUL 2011, The Third Inter. Conf. on Adv. in Sys. Simulation (2011)

    Google Scholar 

  49. M.G.H. Bell, Transp. Res. B 29, 125–137 (1995)

    Article  Google Scholar 

  50. M.G.H. Bell, Transp. Res. B 29, 287–295 (1995)

    Article  Google Scholar 

  51. M.G.H. Bell, Transp. Res. B 34, 533–545 (2000)

    Article  Google Scholar 

  52. M.G.H. Bell, Ch. Cassir, in 2nd Int. Conf. on Traffic and Transportation Studies (ICTTS), Beijing, China, ed. by K.C. Wang, G. Xiao, J. Ji. (American Society of Civil Engineers, USA, 2000), pp. 9–16

    Google Scholar 

  53. M.G.H. Bell, Ch. Cassir, Reliability of Transport Networks (Research Studies Press, Baldock, Hertfordshire, 2000)

    MATH  Google Scholar 

  54. M.G.H. Bell, Ch. Cassir, Transp. Res. B 36, 671–681 (2002)

    Article  Google Scholar 

  55. M.G.H. Bell, Y. Iida, Transportation Network Analysis (Wiley, Hoboken, 1997)

    Book  Google Scholar 

  56. M.G.H. Bell, C.M. Shielda, F. Busch, G. Kruse, Transp. Res. C 5, 197–210 (1997)

    Article  Google Scholar 

  57. N. Bellomo, V. Coscia, M. Delitala, Math. Mod. Meth. App. Sc. 12, 1801–1843 (2002)

    Article  Google Scholar 

  58. P. Berg, A. Mason, A.W. Woods, Phys. Rev. E 61, 1056–1066 (2000)

    Article  Google Scholar 

  59. V.A.C. van den Berg, E.T. Verhoef, Transp. Res. B 94, 43–60 (2016)

    Article  Google Scholar 

  60. P. Berg, A.W. Woods, Phys. Rev. E 64, 035602(R) (2001)

    Google Scholar 

  61. G.N. Bifulco, L. Pariota, F. Simonelli, R.D. Pace, Transp. Res. C 29, 156–170 (2013)

    Article  Google Scholar 

  62. L. Bloomberg, J. Dale, Transp. Res. Rec. 1727, 52–60 (2000)

    Article  Google Scholar 

  63. R. Boel, L. Mihaylova, Transp. Res. B 40, 319–334 (2006)

    Article  Google Scholar 

  64. K. Bogenberger, A.D. May, Working Paper UCB-ITS-PWP-99-19, California Partners for Advanced Transit and Highways (PATH) (Institute of Transportation Studies (UCB), UC Berkeley, 1999)

    Google Scholar 

  65. A. Bose, P. Ioannou, Transp. Res. C 11, 439 (2003)

    Article  Google Scholar 

  66. S.D. Boyles, in Proc. TRB 92nd Annual Meeting, Paper # 13-4519 (TRB, Washington DC, 2013)

    Google Scholar 

  67. M. Brackstone, M. McDonald, Transp. Res. F 2, 181 (1998)

    Article  Google Scholar 

  68. M. Brackstone, P. Sykes, P. Vortisch, Traffic Eng. Contr. 55, 165–171 (2013)

    Google Scholar 

  69. W. Brilon, J. Geistefeld, H. Zurlinden, Transp. Res. Rec. 2027, 1–8 (2007)

    Article  Google Scholar 

  70. W. Brilon, M. Regler, J. Geistefeld, Straßenverkehrstechnik, Heft 3, 136 (2005)

    Google Scholar 

  71. W. Brilon, H. Zurlinden, Straßenverkehrstechnik, Heft 4, 164 (2004)

    Google Scholar 

  72. E. Brockfeld, R.D. Kühne, A. Skabardonis, P. Wagner, Trans. Res. Rec. 1852, 124–129 (2003)

    Article  Google Scholar 

  73. E. Brockfeld, R.D. Kühne, P. Wagner, in Proceeding of the Transportation Research Board 84th Annual Meeting, TRB Paper No. 05-2152 (TRB, Washington, DC, 2005)

    Google Scholar 

  74. S.C. Calvert, H. Taale, S.P. Hoogendoorn, J. Adv. Transp. 50, 570–588 (2016)

    Google Scholar 

  75. J.L. Cao, Z.K. Shi, Int. J. Mod. Phys. C 26, 1550121 (2015)

    Article  Google Scholar 

  76. M. Carey, P. Humphreys, M. McHugh, R. McIvor, Transp. Res. B 65, 90–104 (2014)

    Article  Google Scholar 

  77. R.C. Carlson, I. Papamichail, M. Papageorgiou, IEEE Trans. Intell. Transp. Syst. 12, 1261–1276 (2011)

    Article  Google Scholar 

  78. R.C. Carlson, I. Papamichail, M. Papageorgiou, J. Intell. Transport. Syst. 17, 268–281 (2013)

    Google Scholar 

  79. R.C. Carlson, I. Papamichail, M. Papageorgiou, Transp. Res. C 46, 209–221 (2014)

    Article  Google Scholar 

  80. R.C. Carlson, I. Papamichail, M. Papageorgiou, A. Messmer, Transp. Sci. 44, 238–253 (2010)

    Article  Google Scholar 

  81. R.C. Carlson, I. Papamichail, M. Papageorgiou, A. Messmer, Transp. Res. C 18, 193–212 (2010)

    Article  Google Scholar 

  82. E. Cascetta, Transportation Systems Engineering: Theory and Methods (Kluwer Academic, Dordrecht, 2001)

    Book  MATH  Google Scholar 

  83. M.J. Cassidy, A. Skabardonis (eds.), Papers selected for the 19th Int. Sym. on Transp. and Traffic Theory. Procedia Soc. Behav. Sci. 17, 1–716 (2011)

    Google Scholar 

  84. M.J. Cassidy, A. Skabardonis, A.D. May, Transp. Res. Rec. 1225, 61–72 (1989)

    Google Scholar 

  85. M.J. Cassidy, J.R. Windover, Transp. Res. Rec. 1484, 73–79 (1995)

    Google Scholar 

  86. A.G. Castro, A. Monzon, in Proc. of the 13th International Conference on Reliability and Statistics in Transportation and Communication (RelStat’13), Riga, Latvia, October 2013, pp. 117–127

    Google Scholar 

  87. A. Ceder, Investigation of Two-Regime Traffic Flow Models at the Micro- and Macroscopic Levels, (Ph.D. Thesis, UC, Berkeley University, Berkeley, CA, 1975)

    Google Scholar 

  88. A. Ceder (ed.), Transportation and Traffic Theory. Proceedings of the 14th International Symposium on Transportation and Traffic Theory (Elsevier Science, Oxford, 1999)

    Google Scholar 

  89. A. Ceder, A.D. May, Transp. Res. Rec. 567, 1–15 (1976)

    Google Scholar 

  90. H. Ceylan, M.G.H. Bell, J. Adv. Transp. 38, 291–321 (2004)

    Google Scholar 

  91. H. Ceylan, M.G.H. Bell, Transp. Res. B 39, 169–185 (2005)

    Article  Google Scholar 

  92. E. Chamberlayne, H. Rakha, D. Bish, Transp. Lett. 4, 227–242 (2012)

    Article  Google Scholar 

  93. R.E. Chandler, R. Herman, E.W. Montroll, Oper. Res. 6, 165–184 (1958)

    Article  Google Scholar 

  94. D. Chen, S. Ahn, A. Hegyi, Transp. Res. B 70, 340–358 (2014)

    Article  Google Scholar 

  95. L.-W. Chen, T.-Y. Hu, IEEE Trans. ITS 13, 1266–1276 (2012)

    Google Scholar 

  96. X. Chen, L. Li, Z. Li, IEEE Trans. ITS 13, 1705–1716 (2012)

    Google Scholar 

  97. Q. Chen, Y. Wang, J. Adv. Transp. 50, 949–966 (2016)

    Google Scholar 

  98. A. Chen, Z. Zhou, W.H.K. Lam, Transp. Res. B 45, 1619–1640 (2011)

    Article  Google Scholar 

  99. C.C. Chien, Y. Zhang, P.A. Ioannou, Automatica 33, 1273–1285 (1997)

    Article  Google Scholar 

  100. H.C. Chin, A.D. May, Transp. Res. Rec. 1320, 75–82 (1991)

    Google Scholar 

  101. Y.-C. Chiu, H.S. Mahmassani, Transp. Res. Rec. 1783, 89–97 (2002)

    Article  Google Scholar 

  102. A.H.F. Chow, in [13] (2007), pp. 301–326

    Google Scholar 

  103. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000)

    Article  MathSciNet  Google Scholar 

  104. B.D. Chung, T. Yao, B. Zhang, Netw. Spat. Econ. 12, 167–181(2012)

    Article  MathSciNet  Google Scholar 

  105. E. Cipriani, S. Gori, M. Petrelli, Transp. Res. C 20, 3–14 (2012)

    Article  Google Scholar 

  106. M. Cremer, Der Verkehrsfluss auf Schnellstrassen (Springer, Berlin, 1979)

    Book  Google Scholar 

  107. C.F. Daganzo, Transp. Res. B 28, 269–287 (1994)

    Article  Google Scholar 

  108. C.F. Daganzo, Transp. Res. B 29, 79–93 (1995)

    Article  Google Scholar 

  109. C.F. Daganzo, Fundamentals of Transportation and Traffic Operations (Elsevier Science, New York, 1997)

    Book  Google Scholar 

  110. C.F. Daganzo, Transp. Sci. 32, 3–11 (1998)

    Article  Google Scholar 

  111. C.F. Daganzo, Transp. Res. B 36, 131–158 (2002)

    Article  Google Scholar 

  112. C.F. Daganzo, Transp. Res. B 36, 159–169 (2002)

    Article  Google Scholar 

  113. C.F. Daganzo, Transp. Res. B 39, 934–950 (2005)

    Article  Google Scholar 

  114. C.F. Daganzo, Transp. Res. B 39, 187–196 (2005)

    Article  Google Scholar 

  115. C.F. Daganzo, Transp. Res. B 40, 396–403 (2006)

    Article  Google Scholar 

  116. C.F. Daganzo, Transp. Res. B 41, 49–62 (2007)

    Article  Google Scholar 

  117. C.F. Daganzo, Transp. Res. B 45, 782–788 (2011)

    Article  Google Scholar 

  118. C.F. Daganzo, Transp. Res. B 69, 50–59 (2014)

    Article  Google Scholar 

  119. C.F. Daganzo, N. Geroliminis, Transp. Res. B 42, 771–781 (2008)

    Article  Google Scholar 

  120. C.F. Daganzo, J.A. Laval, “On the Numerical Treatment of Moving Bottlenecks”. Report UCB-ITS-RR-93-7 (Institute of Transportation Studies, University of California, Berkeley, 2003)

    Google Scholar 

  121. C.F. Daganzo, L.J. Lehe, Transp. Res. B 90, 56–69 (2016)

    Article  Google Scholar 

  122. C.F. Daganzo, Y. Sheffi, Transp. Sc. 11, 253–274 (1977)

    Article  Google Scholar 

  123. L.C. Davis, Phys. Rev. E 66, 038101 (2002)

    Article  Google Scholar 

  124. L.C. Davis, Physica A 319, 557 (2003)

    Article  Google Scholar 

  125. L.C. Davis, Phys. Rev. E. 69, 066110 (2004)

    Article  Google Scholar 

  126. L.C. Davis, Physica A 368, 541–550 (2006)

    Article  Google Scholar 

  127. L.C. Davis, Physica A 379, 274–290 (2007)

    Article  Google Scholar 

  128. L.C. Davis, Physica A 388, 4459 (2009)

    Article  Google Scholar 

  129. L.C. Davis, Physica A 389, 3588 (2010)

    Article  Google Scholar 

  130. L.C. Davis, Physica A 390, 943–950 (2011)

    Article  Google Scholar 

  131. L.C. Davis, Physica A 390, 3624 (2011)

    Article  Google Scholar 

  132. L.C. Davis, Physica A 405, 128–139 (2014)

    Article  MathSciNet  Google Scholar 

  133. A.I. Delis, I.K. Nikolos, M. Papageorgiou, Comp. Math. Appl. 70, 1921–1947 (2015)

    Article  Google Scholar 

  134. C. Demir, in [161], pp. 305–317

    Google Scholar 

  135. C. Demir, M. Cremer, S. Donikian, S. Espie, in Proceedings of 5th World Congress on Intelligent Transport Systems (Seoul, 1998)

    Google Scholar 

  136. V. Dixit, L.M. Gardner, S.T. Waller, in Proc. TRB 92nd Annual Meeting, Paper # 13-5103 (TRB, Washington DC, 2013)

    Google Scholar 

  137. K. Doan, S.V. Ukkusuri, Transp. Res. B 46, 1218–1238 (2012)

    Article  Google Scholar 

  138. K. Doan, S.V. Ukkusuri, Transp. Res. C 51, 41–65 (2015)

    Article  Google Scholar 

  139. S. Donikian, S. Espie, M. Parent, G. Rousseau, in Proceedings of 5th World Congress on Intelligent Transport Systems (Seoul, 1998)

    Google Scholar 

  140. J. Drake, J. Shofer, A.D. May, Highway Res. Rec. 154, 53–87 (1967)

    Google Scholar 

  141. D. Drew, Traffic Flow Theory and Control (McGraw Hill, New York, 1968)

    Google Scholar 

  142. J. Du, H. Rakha, V.V. Gayah, Transp. Res. C 66, 136–149 (2016)

    Article  Google Scholar 

  143. A. Ehlert, M.G.H. Bell, S. Grosso, Transp. Res. B 40, 460–479 (2006)

    Article  Google Scholar 

  144. B. Eisenblätter, L. Santen, A. Schadschneider, M. Schreckenberg, Phys. Rev. E 57, 1309 (1998)

    Article  Google Scholar 

  145. L. Elefteriadou, An Introduction to Traffic Flow Theory, Springer Optimization and Its Applications, vol. 84 (Springer, Berlin, 2014)

    Book  MATH  Google Scholar 

  146. L. Elefteriadou, A. Kondyli, W. Brilon, F.L. Hall, B. Persaud, S. Washburn, J. Transp. Eng. 140, 04014003 (2014)

    Article  Google Scholar 

  147. L. Elefteriadou, R.P. Roess, W.R. McShane, Transp. Res. Rec. 1484, 80–89 (1995)

    Google Scholar 

  148. J. Esser, M. Schreckenberg, Int. J. Mod. Phys. C 8, 1025 (1997)

    Article  Google Scholar 

  149. K. Fadhloun, H. Rakha, A. Loulizi, Transp. Lett. 6, 185–196 (2014)

    Article  Google Scholar 

  150. K. Fadhloun, H. Rakha, A. Loulizi, Transp. Res. Rec. 2422, 61–70 (2014)

    Article  Google Scholar 

  151. M. Fellendorf, in Traffic Technology International’96 (UK & International, Dorking, England, 1996)

    Google Scholar 

  152. B. Friedrich, in Autonomes Fahren, ed. by M. Maurer, J.Ch. Gerdes, B. Lenz, H. Winner (Springer, Berlin, 2015), pp. 331–350

    Google Scholar 

  153. T.L. Friesz, Transp. Res. A 190, 413–427 (1985)

    Article  Google Scholar 

  154. T.L. Friesz, D. Bernstein, N.J. Mehta, R.L. Tobin, S. Ganjalizadeh, Oper. Res. 42, 1120–1136 (1994)

    Article  MathSciNet  Google Scholar 

  155. T.L. Friesz, D. Bernstein, T.E. Smith, R.L. Tobin, B.W. Wie, Oper. Res. 41, 179–191 (1993)

    Article  MathSciNet  Google Scholar 

  156. T.L. Friesz, H.-J. Cho, N.J. Mehta, R.L. Tobin, G. Anandalingam, Transp. Sci. 26, 18–26 (1992)

    Article  Google Scholar 

  157. T.L. Friesz, K. Han, P.A. Neto, A. Meimand, T. Yao, Transp. Res. B 47, 102–126 (2013)

    Article  Google Scholar 

  158. T.L. Friesz, J. Luque, R.L. Tobin, B.-W. Wie, Oper. Res. 37, 893–901 (1989)

    Article  MathSciNet  Google Scholar 

  159. T.L. Friesz, R.L. Tobin, T.E. Smith, P.T. Harker, J. of Regional Sci. 23, 337–359 (1983)

    Article  Google Scholar 

  160. H.-T. Fritzsche, Transp. Eng. Contrib. 5, 317 (1994)

    Google Scholar 

  161. M. Fukui, Y. Sugiyama, M. Schreckenberg, D.E. Wolf (eds.), Traffic and Granular Flow’ 01 (Springer, Heidelberg, 2003)

    MATH  Google Scholar 

  162. Z.-Y. Gao, K.-P. Li, X.-G. Li, H.-J. Huang, B.-H. Mao, J.-F. Zheng, Physica A 380, 577–584 (2007)

    Article  Google Scholar 

  163. N.H. Gartner, C.J. Messer, A.K. Rathi (eds.), Traffic Flow Theory: A State-of-the-Art Report (Transportation Research Board, Washington DC, 2001)

    Google Scholar 

  164. N.H. Gartner, Ch. Stamatiadis, in Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, 2009), pp. 9470–9500

    Chapter  Google Scholar 

  165. N.H. Gartner, N.H.M. Wilson (eds.) Transportation and Traffic Theory (Elsevier, New York, 1987)

    Google Scholar 

  166. V.V. Gayah, C. Daganzo, Transp. Res. B 45, 643–655 (2011)

    Article  Google Scholar 

  167. D.C. Gazis, Traffic Science (Wiley, New York, 1974)

    MATH  Google Scholar 

  168. D.C. Gazis, Traffic Theory (Springer, Berlin, 2002)

    MATH  Google Scholar 

  169. D.C. Gazis, R. Herman, Trans. Sci. 26, 223 (1992)

    Article  Google Scholar 

  170. D.C. Gazis, R. Herman, R.B. Potts, Oper. Res. 7, 499–505 (1959)

    Article  Google Scholar 

  171. D.C. Gazis, R. Herman, R.W. Rothery, Oper. Res. 9, 545–567 (1961)

    Article  Google Scholar 

  172. H.X. Ge, R.J. Cheng, Physica A 387, 6952–6958 (2008)

    Article  Google Scholar 

  173. H.-X. Ge, X.-P. Meng, R.-J. Cheng, S.-M. Lo, Physica A 390, 3348–3353 (2011)

    Article  Google Scholar 

  174. J. Geistefeldt, W. Brilon, in [311] (2009), pp. 583–602

    Google Scholar 

  175. N. Geroliminis, C.F. Daganzo, Transp. Res. B 42, 759–770 (2008)

    Article  Google Scholar 

  176. N. Geroliminis, J. Haddad, M. Ramezani, IEEE Trans. ITS 14, 348–359 (2013)

    Google Scholar 

  177. P.G. Gipps, Trans. Res. B 15, 105–111 (1981)

    Article  Google Scholar 

  178. P.G. Gipps, Trans. Res. B. 20, 403–414 (1986)

    Article  Google Scholar 

  179. G. Gomes, R. Horowitz, Transp. Res. C 14, 244–262 (2006)

    Article  Google Scholar 

  180. G. Gomes, A. May, R. Horowitz, Transp. Res. Rec. 1876, 71–81 (2004)

    Article  Google Scholar 

  181. E.J. Gonzales, C.F. Daganzo, Trans. Res. B. 46, 1519–1534 (2012)

    Article  Google Scholar 

  182. M. Guériau, R. Billot, N.-E. El Faouzi, J. Monteil, F. Armetta, S. Hassas, Transp. Res. C 67, 266–279 (2016)

    Article  Google Scholar 

  183. A.K. Gupta, V.K. Katiyar, Physica A 371, 674–682 (2006)

    Article  Google Scholar 

  184. A.K. Gupta, P. Redhu, Physica A 392, 5622–5632 (2013)

    Article  Google Scholar 

  185. A.K. Gupta, P. Redhu, Nonlinear Dyn. 76, 1001–1011 (2014)

    Article  Google Scholar 

  186. A.K. Gupta, S. Sharma, P. Redhu, Nonlinear Dyn. 80, 1091–1108 (2015)

    Article  Google Scholar 

  187. J. Haddad, M. Ramezani, N. Geroliminis, in Proc. of the 91th TRB Annual Meeting (TRB, Washington, D.C, USA, 2012)

    Google Scholar 

  188. F.A. Haight, Mathematical Theories of Traffic Flow (Academic Press, New York, 1963)

    MATH  Google Scholar 

  189. F.L. Hall, Transp. Res. A 21, 191–201 (1987)

    Article  Google Scholar 

  190. F.L. Hall, in [163] (2001), pp. 2-1–2-36

    Google Scholar 

  191. F.L. Hall, K. Agyemang-Duah, Transp. Res. Rec. 1320, 91–98 (1991)

    Google Scholar 

  192. F.L. Hall, B.L. Allen, M.A. Gunter, Trans. Res. A 20, 197–210 (1986)

    Article  Google Scholar 

  193. F.L. Hall, D. Barrow, Transp. Res. Rec. 1194, 55–65 (1988)

    Google Scholar 

  194. F.L. Hall, W. Brilon, Transp. Res. Rec. 1457, 35–42 (1994)

    Google Scholar 

  195. F.L. Hall, M.A. Gunter, Trans. Res. Rec. 1091, 1–9 (1986)

    Google Scholar 

  196. F.L. Hall, L.M. Hall, Transp. Res. Rec. 1287, 108–118 (1990)

    Google Scholar 

  197. F.L. Hall, V.F. Hurdle, J.H. Banks, Transp. Res. Rec. 1365, 12–18 (1992)

    Google Scholar 

  198. F.L. Hall, A. Pushkar, Y. Shi, Transp. Res. Rec. 1398, 24–30 (1993)

    Google Scholar 

  199. S.H. Hamdar, H.S. Mahmassani, M. Treiber, Transp. Res. B. 78, 32–53 (2015)

    Article  Google Scholar 

  200. Y. Han, D. Chen, S. Ahn, Transp. Res. B 98, 113–134 (2017)

    Article  Google Scholar 

  201. K. Han, T.L. Friesz, T. Yao, Transp. Res. B 53, 17–30 (2013)

    Article  Google Scholar 

  202. A. Hegyi, T. Bellemans, B. De Schutter, in Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, 2009), pp. 3943–3964

    Chapter  Google Scholar 

  203. A. Hegyi, B. De Schutter, J. Hellendoorn, Transp. Res. Rec. 1852, 167–174 (2004)

    Article  Google Scholar 

  204. A. Hegyi, B. De Schutter, J. Hellendoorn, IEEE Trans. Intell. Transp. Syst. 6, 102–112 (2005)

    Article  Google Scholar 

  205. A. Hegyi, B. De Schutter, H. Hellendoorn, Transp. Res. C 13, 185–209 (2005)

    Article  Google Scholar 

  206. D. Helbing, Phys. Rev. E 51, 3164–3169 (1995)

    Article  Google Scholar 

  207. D. Helbing, Phys. Rev. E 53, 2366–2381 (1996)

    Article  MathSciNet  Google Scholar 

  208. D. Helbing, Physica A 233, 253–282 (1996)

    Article  Google Scholar 

  209. D. Helbing, Phys. Rev. E 55, R25–R28 (1997)

    Article  Google Scholar 

  210. D. Helbing, Phys. Rev. E 55, 3735–3738 (1997)

    Article  Google Scholar 

  211. D. Helbing, Physica A 242, 175–194 (1997)

    Article  Google Scholar 

  212. D. Helbing, Phys. Rev. E 57, 6176–6179 (1998)

    Article  Google Scholar 

  213. D. Helbing, Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  Google Scholar 

  214. D. Helbing, J. Phys. A Math. Gen. 36, L593–L598 (2003)

    Article  Google Scholar 

  215. D. Helbing, “Traffic flow”, in Encyclopedia of Nonlinear Science, ed. by A. Scott (Routledge, New York, 2005)

    Google Scholar 

  216. D. Helbing, Eur. Phys. J. B 69, 539–548 (2009)

    Article  Google Scholar 

  217. D. Helbing, Eur. Phys. J. B 69, 569–570 (2009)

    Article  Google Scholar 

  218. D. Helbing, Eur. Phys. J. B 70, 257–274 (2009)

    Article  Google Scholar 

  219. D. Helbing, A. Greiner, Phys. Rev. E 55, 5498–5507 (1997)

    Article  Google Scholar 

  220. D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, Transp. Res. B 35, 183–211 (2001)

    Article  Google Scholar 

  221. D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, Math. Comp. Mod. 35, 517–547 (2002)

    Article  Google Scholar 

  222. D. Helbing, A. Hennecke, M. Treiber, Phys. Rev. Lett. 82, 4360–4363 (1999)

    Article  Google Scholar 

  223. D. Helbing, H.J. Herrmann, M. Schreckenberg, D.E. Wolf (eds.), Traffic and Granular Flow’ 99 (Springer, Heidelberg, 2000)

    MATH  Google Scholar 

  224. D. Helbing, K. Nagel, Contemp. Phys. 45, 405–426 (2004)

    Article  Google Scholar 

  225. D. Helbing, M. Schreckenberg, Phys. Rev. E 59, R2505 (1999)

    Article  Google Scholar 

  226. D. Helbing B. Tilch, Phys. Rev. E 58, 133–138 (1998)

    Article  Google Scholar 

  227. D. Helbing, B. Tilch, Eur. Phys. J. B 68, 577–586 (2009)

    Article  Google Scholar 

  228. D. Helbing, M. Treiber, Phys. Rev. Lett. 81, 3042–3045 (1998)

    Article  Google Scholar 

  229. D. Helbing, M. Treiber, Science 282, 2001–2003 (1998)

    Article  Google Scholar 

  230. D. Helbing, M. Treiber, A. Kesting, Physica A 363, 62–72 (2006)

    Article  Google Scholar 

  231. D. Helbing, M. Treiber, A. Kesting, M. Schönhof, Eur. Phys. J. B 69, 583–598 (2009)

    Article  Google Scholar 

  232. R. Herman, S. Ardekani, Transp. Sci. 18, 101–140 (1984)

    Article  Google Scholar 

  233. R. Herman, E.W. Montroll, R.B. Potts, R.W. Rothery, Oper. Res. 7, 86–106 (1959)

    Article  Google Scholar 

  234. M. Herrmann, B.S. Kerner, Physica A 255, 163–188 (1998)

    Article  Google Scholar 

  235. B.G. Heydecker, J.D. Addison, Transp. Sci. 39, 39–57 (2005)

    Article  Google Scholar 

  236. Highway Capacity Manual 2000, (National Research Council, Transportation Research Board, Washington, D.C., 2000)

    Google Scholar 

  237. Highway Capacity Manual 2010, (National Research Council, Transportation Research Board, Washington, D.C., 2010)

    Google Scholar 

  238. A. Hiller, in Tagungsband des Workshops Fahrerassistenzsysteme FAS2003, Hrsg.: C. Stiller und M. Maurer (Universität Karlsruhe, Germany, 2003), S. 31–34 (ISBN 3-9809121-0-8)

    Google Scholar 

  239. M. Hilliges, W. Weidlich, Trans. Res. B 29, 407 (1995)

    Article  Google Scholar 

  240. Y. Hino, K. Tobita, T. Nagatani, Physica A 392, 3223–3230 (2013)

    Article  MathSciNet  Google Scholar 

  241. J.H. Hogema, W.H. Janssen, in Proceedings of 3rd World Congress on Intelligent Transport Systems (1996)

    Google Scholar 

  242. S.P. Hoogendoorn, Multiclass Continuum Modelling of Multilane Traffic Flow (Delft University of Technology, Delft, 1999)

    Google Scholar 

  243. S.P. Hoogendoorn, R. Hoogendoorn, Phil. Trans. R. Soc. A 368, 4497–4517 (2010)

    Article  MathSciNet  Google Scholar 

  244. S.P. Hoogendoorn, V.L. Knoop, H.J. Van Zuylen, J. Adv. Transp. 42, 357–377 (2008)

    Google Scholar 

  245. S.P. Hoogendoorn, S. Luding, P.H.L. Bovy, M. Schreckenberg, D.E. Wolf (eds.), Traffic and Granular Flow’ 03 (Springer, Heidelberg, 2005)

    Google Scholar 

  246. Z. Hou, X. Xu, J. Yan, J.-X. Xu, G. Xiong, IEEE Trans. ITS 12, 1305–1318 (2011)

    Google Scholar 

  247. Z. Hou, J. Yan, J.-X. Xu, Z. Li, IEEE Trans. ITS 13, 606–618 (2012)

    Google Scholar 

  248. P. Hsu, J.H. Banks, Transp. Res. Rec. 1398, 17–23 (1993)

    Google Scholar 

  249. T.-Y. Hu, C.-C. Tong, T.-Y. Liao, W.-M. Ho, IEEE Trans. ITS 13, 1277–1286 (2012)

    Google Scholar 

  250. P.B. Hunt, D.I. Robertson, R.D. Bretherton, M.C. Royle, Traffic Eng. Contr. 23, 190–192 (1982)

    Google Scholar 

  251. N. Huynh, H.S. Mahmassani, H. Tavana, Transp. Res. Rec. 1783, 55–65 (2002)

    Article  Google Scholar 

  252. P.A. Ioannou, C.C. Chien, IEEE Trans. Veh. Technol. 42, 657–672 (1993)

    Article  Google Scholar 

  253. T. Iryo, Transp. Res. B 45, 867–879 (2011)

    Article  Google Scholar 

  254. ISO 15622, 2010. Intelligent transport systems - Adaptive Cruise Control systems - Performance requirements and test procedures

    Google Scholar 

  255. B. Jäggi, S. Hohmann, K.W. Axhausen, J. Geistefeldt, Transp. Res. Rec. 2161, 16–24 (2014)

    Article  Google Scholar 

  256. R. Jayakrishnan, H.S. Mahmassani, T.-Y. Hu, Transp. Res. C 2, 129–147 (1994)

    Article  Google Scholar 

  257. K. Jerath, S.N. Brennan, IEEE Trans. ITS 13, 1782–1791 (2012)

    Google Scholar 

  258. R. Jiang, Q.S. Wu, Z.J. Zhu, Phys. Rev. E 64, 017101 (2001)

    Article  Google Scholar 

  259. W.-L. Jin, Transp. Res. B 46, 1360–1373 (2012)

    Article  Google Scholar 

  260. S. Jin, D.-H. Wang, Z.-Y. Huang, P.-F. Tao, Physica A 390, 1931–1940 (2011)

    Article  Google Scholar 

  261. G. Kalafatos, S. Peeta, in [311] (2009), pp. 541–558

    Google Scholar 

  262. Y. Kan, Y. Wang, M. Papageorgiou, I. Papamichail, Transp. Res. C 62, 149–170 (2016)

    Article  Google Scholar 

  263. O. Kaumann, K. Froese, R. Chrobok, J. Wahle, L. Neubert, M. Schreckenberg, in [223] (2000), pp. 351–356

    Google Scholar 

  264. B.S. Kerner, in Transportation Systems 1997, ed. by M. Papageorgiou, A. Pouliezos. (Elsevier Science, London, 1997), pp. 765–770

    Google Scholar 

  265. B.S. Kerner, Phys. Rev. Lett. 81, 3797–3800 (1998)

    Article  Google Scholar 

  266. B.S. Kerner, in Proceedings of the 3rd Symposium on Highway Capacity and Level of Service, ed. by R. Rysgaard, vol. 2 (Road Directorate, Ministry of Transport, Denmark, 1998), pp. 621–642

    Google Scholar 

  267. B.S. Kerner, Trans. Res. Rec. 1678, 160–167 (1999)

    Article  Google Scholar 

  268. B.S. Kerner, The Physics of Traffic (Springer, Berlin, New York, 2004)

    Book  Google Scholar 

  269. B.S. Kerner, Introduction to Modern Traffic Flow Theory and Control (Springer, Heidelberg, Dordrecht, London, New York, 2009)

    Book  MATH  Google Scholar 

  270. B.S. Kerner, Physica A 392, 5261–5282 (2013)

    Article  MathSciNet  Google Scholar 

  271. B.S. Kerner, in Vehicular Communications and Networks, ed. by W. Chen (Woodhead Publishings, Cambridge, 2015), pp. 223–254

    Google Scholar 

  272. B.S. Kerner, Elektrotechnik Informationstechnik 132, 417–433 (2015)

    Article  Google Scholar 

  273. B.S. Kerner, S.L. Klenov, J. Phys. A Math. Gen. 39, 1775–1809 (2006)

    Article  Google Scholar 

  274. B.S. Kerner, S.L. Klenov, P. Konhäuser, Phys. Rev. E. 56, 4200–4216 (1997)

    Article  Google Scholar 

  275. B.S. Kerner, P. Konhäuser, Phys. Rev. E 48, 2335–2338 (1993)

    Article  Google Scholar 

  276. B.S. Kerner, P. Konhäuser, Phys. Rev. E 50, 54–83 (1994)

    Article  Google Scholar 

  277. B.S. Kerner, P. Konhäuser, bild der wissenschaft, Heft 11, 86–89 (1994)

    Google Scholar 

  278. B.S. Kerner, P. Konhäuser, M. Schilke, Phys. Rev. E 51, 6243–6246 (1995)

    Article  Google Scholar 

  279. B.S. Kerner, P. Konhäuser, M. Schilke, in Modeling Transport Systems, vol.2, ed. by D. Hensher, J. King, T. Oum (Elsevier Science, Oxford, 1996), pp. 167–182

    Google Scholar 

  280. B.S. Kerner, P. Konhäuser, M. Schilke, in Transportation and Traffic Theory, ed. by J.-B. Lesort (Elsevier Science, Oxford, 1996), pp. 119–145

    Google Scholar 

  281. B.S. Kerner, P. Konhäuser, M. Schilke, Phys. Lett. A. 215, 45–56 (1996)

    Article  Google Scholar 

  282. B.S. Kerner, H. Rehborn, Phys. Rev. E 53, R1297–R1300 (1996)

    Article  Google Scholar 

  283. A. Kesting, “Microscopic Modeling of Human and Automated Driving: Towards Traffic-Adaptive Cruise Control”, Doctoral Thesis (Technical University of Dresden, Germany, 2008)

    Google Scholar 

  284. A. Kesting, M. Treiber, D. Helbing, Phil. Trans. R. Soc. A 368, 4585–4605 (2010)

    Article  Google Scholar 

  285. A. Kesting, M. Treiber, M. Schönhof, D. Helbing, Transp. Res. C 16, 668–683 (2008)

    Article  Google Scholar 

  286. A. Kesting, M. Treiber, M. Schönhof, D. Helbing, Transp. Res. Rec. 2000, 16–24 (2007)

    Article  Google Scholar 

  287. A. Kesting, M. Treiber, M. Schönhof, F. Kranke, D. Helbing, in [459] (2007), pp. 633–643

    Google Scholar 

  288. M. Keyvan-Ekbatani, A. Kouvelas, I. Papamichail, M. Papageorgiou, Transp. Res. B 46, 1393–1403 (2012)

    Article  Google Scholar 

  289. M. Keyvan-Ekbatani, M. Papageorgiou, I. Papamichail, in Proc. of TRB 2013 Annual Meeting (TRB, Washington, D.C., 2013)

    Google Scholar 

  290. B. Khondaker, L. Kattan, Transp. Lett. 7, 264–278 (2015)

    Article  Google Scholar 

  291. B. Khondaker, L. Kattan, Transp. Res. C 58, 146–159 (2015)

    Article  Google Scholar 

  292. R. Kianfar, B. Augusto, A. Ebadighajari, U. Hakeem, J. Nilsson, A. Raza, R.S. Tabar, N.V. Irukulapati, C. Englund, P. Falcone, S. Papanastasiou, L. Svensson, H. Wymeersch, IEEE Trans. ITS 13, 994–1007 (2012)

    Google Scholar 

  293. W. Knospe, L. Santen, A. Schadschneider, M. Schreckenberg, Phys. Rev. E 70, 016115 (2004)

    Article  Google Scholar 

  294. E. Kometani, T. Sasaki, J. Oper. Res. Soc. Jpn. 2, 11 (1958)

    Google Scholar 

  295. E. Kometani, T. Sasaki, Oper. Res. 7, 704–720 (1959)

    Article  Google Scholar 

  296. E. Kometani, T. Sasaki, in Theory of Traffic Flow, ed. by R. Herman (Elsevier, Amsterdam, 1961), pp. 105

    Google Scholar 

  297. A. Kondyli, L. Elefteriadou, W. Brilon, F.L. Hall, B. Persaud, S. Washburn, J. Transp. Eng. 139, 931–940 (2013)

    Google Scholar 

  298. M. Koshi, M. Iwasaki, I. Ohkura, in Proc. 8th International Symposium on Transportation and Traffic Theory, ed. by V.F. Hurdle. (University of Toronto Press, Toronto, Ontario, 1983), pp. 403

    Google Scholar 

  299. V.L. Knoop, H. van Lint, S.P. Hoogendoorn, Physica A 438, 236–250 (2015)

    Article  Google Scholar 

  300. S. Krauß, PhD thesis, DRL-Forschungsbericht 98-08 (1998). http://www.zaik.de/~paper

  301. S. Krauß, P. Wagner, C. Gawron, Phys. Rev. E 55, 5597–5602 (1997)

    Article  Google Scholar 

  302. I.A. Ktousakis, I.K. Nokolos, M. Papageorgiou, Transp. Res. Procedia 9, 111–127 (2015)

    Article  Google Scholar 

  303. T.S. Kuhn, The Structure of Scientific Revolutions, 4th edn. (The University of Chicago Press, Chicago, London, 2012)

    Book  Google Scholar 

  304. R.D. Kühne, in Procs. of the 9th International Symposium on Transportation and Traffic Theory, ed. by J. Volmer, R. Hammerslag (VNU Scientific Press, Utrecht, The Netherlands, 1984), pp. 21–42

    Google Scholar 

  305. S. Kukuchi, N. Uno, M. Tanaka, J. Transp. Eng. 129, 146 (2003)

    Article  Google Scholar 

  306. A. Kumar, S. Peeta, Y. Nie, Transp. Res. Rec. 2283, 131–142 (2012)

    Article  Google Scholar 

  307. D.A. Kurtze, D.C. Hong, Phys. Rev. E 52, 218–221 (1995)

    Article  Google Scholar 

  308. A.A. Kurzhanskiy, P. Varaiya, Phil. Trans. R. Soc. A 368, 4607–4626 (2010)

    Article  Google Scholar 

  309. W.H.K. Lam,K.S. Chan, Z.-C. Li, M.G.H. Bell, J. Adv. Transp. 44, 219–230 (2010)

    Google Scholar 

  310. W.H.K. Lam, H.K. Lo, S.C. Wong, Transp. Res. B 66, 1–3 (2014)

    Article  Google Scholar 

  311. W.H.K. Lam, S.C. Wong, H.K. Lo (eds.), Transportation and Traffic Theory 2009 (Springer, Dordrecht, Heidelberg, London, New York, 2009)

    Google Scholar 

  312. J.A. Laval, Transp. Res. B 40, 937–944 (2006)

    Article  Google Scholar 

  313. J.A. Laval, Transp. Res. Rec. 1988, 86–91 (2006)

    Article  Google Scholar 

  314. J.A. Laval, Transp. Res. B 43, 720–728 (2009)

    Article  Google Scholar 

  315. J.A. Laval, F. Castrillón, Transp. Res. B 81, 904–916 (2015)

    Article  Google Scholar 

  316. J.A. Laval, B.R. Chilukuri, Transp. Sci. 48, 217–224 (2013)

    Article  Google Scholar 

  317. J.A. Laval, B.R. Chilukuri, Transp. Res. B 89, 168–177 (2016)

    Article  Google Scholar 

  318. J.A. Laval, C.F. Daganzo, Transp. Res. B 40, 251–264 (2006)

    Article  Google Scholar 

  319. J.A. Laval, L. Leclercq, Transp. Res. B 42, 511–522 (2008)

    Article  Google Scholar 

  320. J.A. Laval, L. Leclercq, Transp. Res. B 52, 17–30 (2013)

    Article  Google Scholar 

  321. J.P. Lebacque, J.B. Lesort, F. Giorgi, Transp. Res. Rec. 1644, 70–79 (1998)

    Article  Google Scholar 

  322. L. Leclercq, S. Chanut, J.B. Lesort, Transp. Res. Rec. 1883, 3–13 (2004)

    Article  Google Scholar 

  323. L. Leclercq, N. Chiabaut, B. Trinquier, Transp. Res. B 62, 1–12 (2014)

    Article  Google Scholar 

  324. H.Y. Lee, H.-W. Lee, D. Kim, Phys. Rev. Lett. 81, 1130 (1998)

    Article  Google Scholar 

  325. H.Y. Lee, H.-W. Lee, D. Kim, Phys. Rev. E 59, 5101–5111 (1999)

    Article  Google Scholar 

  326. H.Y. Lee, H.-W. Lee, D. Kim, Physica A 281, 78 (2000)

    Article  Google Scholar 

  327. H.Y. Lee, H.-W. Lee, D. Kim, Phys. Rev. E 62, 4737 (2000)

    Article  Google Scholar 

  328. J.-B. Lesort (ed.), Transportation and Traffic Theory. Proceedings of the 13th International Symposium on Transportation and Traffic Theory (Elsevier Science, Oxford, 1996)

    Google Scholar 

  329. W. Leutzbach, Introduction to the Theory of Traffic Flow (Springer, Berlin, 1988)

    Book  Google Scholar 

  330. M.W. Levin, S.D. Boyles, Transp. Res. C 62, 103–116 (2016)

    Article  Google Scholar 

  331. W.Levine, M. Athans, IEEE Trans. Automat. Contr. 11, 355–361 (1966)

    Article  Google Scholar 

  332. P.Y. Li, A. Shrivastava, Transp. Res. C 10, 275–301 (2002)

    Article  Google Scholar 

  333. Q.-L. Li, B.-H. Wang, M.-R. Liu, Physica A 390, 1356–1362 (2011)

    Article  Google Scholar 

  334. C.-Y. Liang, H. Peng, Veh. Syst. Dyn. 32, 313–330 (1999)

    Article  Google Scholar 

  335. C.-Y. Liang, H. Peng, JSME Int. J. Ser. C 43, 671–677 (2000)

    Article  Google Scholar 

  336. M.J. Lighthill, G.B. Whitham, Proc. Roy. Soc. A 229, 281–345 (1955)

    Article  Google Scholar 

  337. W.H. Lin, C.F. Daganzo, Transp. Res. A 31, 141–155 (1997)

    Article  Google Scholar 

  338. T.-W. Lin, S.-L. Hwang, P. Green, Saf. Sci. 47, 620–625 (2009)

    Article  Google Scholar 

  339. S. Liu, H. Hellendoorn, B. De Schutter, IEEE Trans. ITS 18, 306–320 (2017)

    Google Scholar 

  340. H. Liu, D.Z.W. Wang Transp. Res. B 72, 20–39 (2015)

    Google Scholar 

  341. J. Long, Z. Gao, P. Orenstein, H. Ren, IEEE Trans. ITS 13, 469–481 (2012)

    Google Scholar 

  342. J. Long, Z. Gao, X. Zhao, A. Lian, P. Orenstein, Netw. Spat. Econ. 11, 43–64 (2011)

    Article  MathSciNet  Google Scholar 

  343. M. Lorenz, L. Elefteriadou, Transp. Res. Circ. E-C018, 84–95 (2000)

    Google Scholar 

  344. C.-C. Lu, J. Liu, Y. Qu, S. Peeta, N.M. Rouphail, X. Zhou, Transp. Res. B 94, 217–239 (2016)

    Article  Google Scholar 

  345. L. Lu, Y. Xu, C. Antoniou, M. Ben-Akiva, Transp. Res. C 51, 149–166 (2015)

    Article  Google Scholar 

  346. P. Luathep, A. Sumalee, W.H.K. Lam, Z-Ch. Li, H.K. Lo, Transp. Res. B 45, 808–827 (2011)

    Google Scholar 

  347. I. Lubashevsky, P. Wagner, R. Mahnke, Eur. Phys. J. B 32, 243–247 (2003)

    Article  Google Scholar 

  348. S. Lübeck, M. Schreckenberg, K.D. Usadel, Phys. Rev. E 57, 1171 (1998)

    Article  Google Scholar 

  349. W. Lv, W.-g. Song, Z.-m. Fang, Physica A 390, 2303–2314 (2011)

    Article  Google Scholar 

  350. M. McDonald, J. Wu, in Proceedings of the ISC 97 Conference (Boston, USA, 1997)

    Google Scholar 

  351. S. Maerivoet, B. De Moor, Phys. Rep. 419, 1–64 (2005)

    Article  MathSciNet  Google Scholar 

  352. H.S. Mahmassani, Netw. Spat. Econ. 1, 267–292 (2001)

    Article  Google Scholar 

  353. H.S. Mahmassani (ed.), Traffic and Transportation Theory (Elsevier Science, Amsterdam, 2005)

    MATH  Google Scholar 

  354. H.S. Mahmassani, G.L. Chang. Transp. Sci. 21, 89–99 (1987)

    Article  Google Scholar 

  355. H.S. Mahmassani, R. Herman, Transp. Sci. 18, 362–384 (1984)

    Article  Google Scholar 

  356. H.S. Mahmassani, R. Jayakrishnan, Transp. Res. A 25, 293–307 (1991)

    Article  Google Scholar 

  357. H.S. Mahmassani, S. Peeta, Transp. Res. Rec. 1408, 83–93 (1993)

    Google Scholar 

  358. H.S. Mahmassani, M. Saberi, A. Zockaie, Transp. Res. C 36, 480–497 (2013)

    Article  Google Scholar 

  359. H.S. Mahmassani, J.C. Williams, R. Herman, Transp. Res. Rec. 971, 121–130 (1984)

    Google Scholar 

  360. H.S. Mahmassani, J.C. Williams, R. Herman, in Proc. of the 10th Int. Symposium on Transp. and Traffic Theory, ed. by N.H. Gartner (Elsevier, New York, 1987), pp. 1–20

    Google Scholar 

  361. R. Mahnke, J. Kaupužs, I. Lubashevsky, Phys. Rep. 408, 1–130 (2005)

    Article  Google Scholar 

  362. F.L. Mannering, W.P. Kilareski, Principles of Highway Engineering and Traffic Analysis, 2nd edn. (Wiley, New York, 1998)

    Google Scholar 

  363. J.-J. Martinez, C. Canudas-do-Wit, IEEE Trans. Contr. Syst. Technol. 15, 246–258 (2007)

    Article  Google Scholar 

  364. A.D. May, Highway Res. Rec. 59, 9–38 (1964)

    Google Scholar 

  365. A.D. May, Traffic Flow Fundamentals (Prentice-Hall, New Jersey, 1990)

    Google Scholar 

  366. A.D. May, P. Athol, W. Parker, J.B. Rudden, Highway Res. Rec. 21, 48–70 (1963)

    Google Scholar 

  367. D.K. Merchant, G.L. Nemhauser. Transp. Sci. 12, 183–199 (1978)

    Article  Google Scholar 

  368. D.K. Merchant, G.L. Nemhauser, Transp. Sci. 12, 200–207 (1978)

    Article  Google Scholar 

  369. N. Motamedidehkordi, T. Benz, M. Margreiter, in Advanced Microsystems for Automotive Applications 2015, Lecture Notes in Mobility 2016 (Springer, Berlin, 2016), pp 37–52

    Google Scholar 

  370. R. Mounce, in [311] (2009), pp. 327–344

    Google Scholar 

  371. R. Müller, G. Nöcker, in Proceedings of the Intelligent Vehicles ’92 Symposium, ed. by I. Masaki (IEEE, Detroit, USA, 1992), pp. 173–178

    Google Scholar 

  372. J.C. Muñoz, C.F. Daganzo, in Traffic and Transportation Theory, ed. by M.A.P. Taylor (Pergamon, Oxford, 2002) pp. 441–462

    Google Scholar 

  373. T. Nagatani, Physica A 261, 599–607 (1998)

    Article  MathSciNet  Google Scholar 

  374. T. Nagatani, Phys. Rev. E 59, 4857–4864 (1999)

    Article  Google Scholar 

  375. T. Nagatani, Physica A 271, 200–221 (1999)

    Article  Google Scholar 

  376. T. Nagatani, Physica A 272, 592–611 (1999)

    Article  Google Scholar 

  377. T. Nagatani, Rep. Prog. Phys. 65, 1331–1386 (2002)

    Article  Google Scholar 

  378. T. Nagatani, K. Nakanishi, Phys. Rev. E 57, 6415–6421 (1998)

    Article  Google Scholar 

  379. K. Nagel, M. Schreckenberg, J. Phys. (France) I 2, 2221–2229 (1992)

    Google Scholar 

  380. K. Nagel, P. Wagner, R. Woesler, Oper. Res. 51, 681–716 (2003)

    Article  MathSciNet  Google Scholar 

  381. K. Nagel, D.E. Wolf, P. Wagner, P. Simon, Phys. Rev. E 58, 1425–1437 (1998)

    Article  Google Scholar 

  382. Y. Naito, T. Nagatani, Physica A 391, 1626–1635 (2012)

    Article  Google Scholar 

  383. S. Nakayama, R.D. Connors, D. Walting, in [311] (2009), pp. 39–56

    Google Scholar 

  384. Y. Nesterov, A. de Palma, Netw. Spat. Econ. 3, 371–395 (2003)

    Article  Google Scholar 

  385. J.P.L. Neto, M.L. Lyra, C.R. da Silva, Physica A 390, 3558–3565 (2011)

    Article  Google Scholar 

  386. G.F. Newell, Oper. Res. 3, 176–188 (1955)

    Google Scholar 

  387. G.F. Newell, Ann. Math. Stat. 31, 589–597 (1960)

    Article  Google Scholar 

  388. G.F. Newell, Oper. Res. 9, 209–229 (1961)

    Article  Google Scholar 

  389. G.F. Newell, Oper. Res. Soc. Jpn. 5, 9–54 (1962)

    Google Scholar 

  390. G.F. Newell, SIAM Rev. 575, 223–240 (1965)

    Article  Google Scholar 

  391. G.F. Newell, in Proc. Second Internat. Sympos. on Traffic Road Traffic Flow (OECD, London, 1965), pp. 73–83

    Google Scholar 

  392. G.F. Newell, Applications of Queuing Theory (Chapman Hall, London, 1982)

    Book  MATH  Google Scholar 

  393. G.F. Newell, Transp. Res. B 32, 531 (1988)

    Article  Google Scholar 

  394. G.F. Newell, Transp. Res. B 27, 289–303 (1993)

    Article  Google Scholar 

  395. G.F. Newell, Inst. of Transp. Studies Research Report UCB ITS-RR-93-3 (University of California, Berkley, CA, 1993)

    Google Scholar 

  396. G.F. Newell, “Theory of highway traffic flow 1945 to 1965”. Course Notes UCB-ITS-CN-95-1 (Inst. of Transp. Studies, University of California, Berkeley, 1995)

    Google Scholar 

  397. G.F. Newell, “A simplified car-following theory: A lower order model”. Research Report UCB-ITS-RR-99-1 (Inst. of Transp. Studies, University of California, Berkeley, 1999)

    Google Scholar 

  398. G.F. Newell, Trans. Res. B 36, 195–205 (2002)

    Article  Google Scholar 

  399. L. Newman, A.M. Dunnet, G.J. Meis, Highway Res. Rec. 303, 44–55 (1970)

    Google Scholar 

  400. D. Ngoduy, Transpormetrica 8, 43–60 (2012)

    Article  Google Scholar 

  401. D. Ngoduy, Commun. Nonlinear Sci. Numer. Simul. 18, 2838–2851 (2013)

    Article  MathSciNet  Google Scholar 

  402. D. Ngoduy, S.P. Hoogendoorn, R. Liu, Physica A 388, 2705–2716 (2009)

    Article  Google Scholar 

  403. Y. Nie, Transp. Res. B 45, 329–342 (2011)

    Article  Google Scholar 

  404. G. Nöcker, in Band Elektronik im Kraftfahrzeugwesen, ed. by G. Walliser, vol. 437 (Expert Verlag, 1994), pp. 299–322 (ISBN 3-8169-1024-6)

    Google Scholar 

  405. S. Ossen, S.P. Hoogendoorn, Transp. Res. C 19, 182–195 (2011)

    Article  Google Scholar 

  406. R. Ourulingesh, Adaptive Cruise Control, M.Sc. Thesis (Kamval Rekhi School of Information Techno1ogy, Indian Institute of Techno1ogy Bombay, 2004)

    Google Scholar 

  407. M. Papageorgiou, Application of Automatic Control Concepts in Traffic Flow Modeling and Control (Springer, Berlin, New York, 1983)

    Book  MATH  Google Scholar 

  408. M. Papageorgiou, J.-M. Blosseville, H. Hadj-Salem, Trans. Res. A. 24, 361–370 (1990)

    Article  Google Scholar 

  409. M. Papageorgiou, H. Hadj-Salem, J.-M. Blosseville, Transp. Res. Rec. 1320, 58–64 (1991)

    Google Scholar 

  410. M. Papageorgiou, H. Hadj-Salem, F. Middleham, Transp. Res. Rec. 1603, 99–98 (1997)

    Article  Google Scholar 

  411. M. Papageorgiou, E. Kosmatopoulos, I. Papamichail, Y. Wang, IEEE Trans. ITS. 9, 360–365 (2008)

    Google Scholar 

  412. M. Papageorgiou, A. Kotsialos, IEEE Trans. ITS. 3, 271–281 (2002)

    Google Scholar 

  413. M. Papageorgiou, Y. Wang, E. Kosmatopoulos, I. Papamichail, Traf. Eng. Cont. 48, 271–276 (2007)

    Google Scholar 

  414. H.J. Payne, in Mathematical Models of Public Systems, ed. by G.A. Bekey, vol. 1 (Simulation Council, La Jolla, 1971), pp. 51–60

    Google Scholar 

  415. H.J. Payne, Transp. Res. Rec. 772, 68 (1979)

    Google Scholar 

  416. S. Peeta, H.S. Mahmassani, Transp. Res. C 3, 83–98 (1995)

    Article  Google Scholar 

  417. S. Peeta, H.S. Mahmassani, Ann. Oper. Res. 60, 81–113 (1995)

    Article  Google Scholar 

  418. S. Peeta, A.K. Ziliaskopoulos, Netw. Spat. Econ. 1, 233–265 (2001)

    Article  Google Scholar 

  419. G.H. Peng, Physica A 391, 5971–5977 (2013)

    Article  Google Scholar 

  420. G.H. Peng, Nonlinear Dyn. 73, 1035–1043 (2013)

    Article  Google Scholar 

  421. G.H. Peng, X.H. Cai, B.F. Cao, C.Q. Liu, Physica A 391, 656–663 (2012)

    Article  Google Scholar 

  422. G.H. Peng, X.H. Cai, C.Q. Liu, B.F. Cao, M.X. Tuo, Phys. Lett. A 375, 3973–3977 (2011)

    Article  Google Scholar 

  423. G.H. Peng, X.H. Cai, C.Q. Liu, M.X. Tuo, Phys. Lett. A 375, 2823–2827 (2011)

    Article  Google Scholar 

  424. G.H. Peng, X.H. Cai, C.Q. Liu, M.X. Tuo, Phys. Lett. A 375, 2153–2157 (2011)

    Article  Google Scholar 

  425. G.H. Peng, X.H. Cai, C.Q. Liu, M.X. Tuo, Phys. Lett. A 376, 447–451 (2012)

    Article  Google Scholar 

  426. G.H. Peng, D.H. Sun, Phys. Lett. A 374, 1694–1698 (2010)

    Article  Google Scholar 

  427. B.N. Persaud, “Study of a Freeway Bottleneck to Explore Some Unresolved Traffic Flow Issues”. Ph.D. Dissertation (University of Toronto, Toronto, Canada, 1986)

    Google Scholar 

  428. B.N. Persaud, F.L. Hall, Trans. Res. A 23, 103–113 (1989)

    Article  Google Scholar 

  429. B.N. Persaud, F.L. Hall, L.M. Hall, Transp. Res. Rec. 1287, 167–175 (1990)

    Google Scholar 

  430. B.N. Persaud, V.F. Hurdle, Transp. Res. Rec. 1194, 191–198 (1988)

    Google Scholar 

  431. B.N. Persaud, V.F. Hurdle, in Proceedings of International Symposium on Highway Capacity (Karlsruhe, Germany, 1991)

    Google Scholar 

  432. B.N. Persaud, S. Yagar, R. Brownlee, Transp. Res. Rec. 1634, 64–69 (1998)

    Article  Google Scholar 

  433. B.N. Persaud, S. Yagar, D. Tsui, H. Look, Transp. Res. Rec. 1748, 110–115 (2001)

    Article  Google Scholar 

  434. B. Piccoli, A. Tosin, in Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, 2009), pp. 9727–9749

    Chapter  Google Scholar 

  435. C. Pinnell, D.R. Drew, W.R. McCasland, J.A. Wattleworth, Highway Res. Rec. 157, 22–70 (1967)

    Google Scholar 

  436. R. Pothering, S. Gao, in Proc. TRB 92nd Annual Meeting, Paper # 13-3641 (TRB, Washington DC, 2013)

    Google Scholar 

  437. I. Prigogine, in Theory of Traffic Flow, ed. by R. Herman (Elsevier, Amsterdam, 1961), p. 158

    Google Scholar 

  438. I. Prigogine, F.C. Andrews, Oper. Res. 8, 789 (1960)

    Article  Google Scholar 

  439. I. Prigogine, R. Herman, Kinetic Theory of Vehicular Traffic (American Elsevier, New York, 1971)

    MATH  Google Scholar 

  440. Z. Qian, W. Shen, H.M. Zhang, Transp. Res. B 46, 874–893 (2012)

    Article  Google Scholar 

  441. Z. Qian, H.M. Zhang, Transp. Res. B 46, 1489–1503 (2012)

    Article  Google Scholar 

  442. R. Rajamani, Vehicle Dynamics and Control, Mechanical Engineering Series (Springer US, Boston, 2012)

    Book  MATH  Google Scholar 

  443. H. Rakha, M. Van Aerde, Transp. Res. Rec. 1510, 26–34 (1995)

    Google Scholar 

  444. H. Rakha, P. Pasumarthy, S. Adjerid, Transp. Lett. 1, 95–110 (2009)

    Article  Google Scholar 

  445. H. Rakha, A. Tawfik, in Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, 2009), pp. 9429–9470

    Chapter  Google Scholar 

  446. H. Rakha, W. Wang, Transp. Res. Rec. 2124, 113–124 (2009)

    Article  Google Scholar 

  447. B. Ran, D. Boyce, Modeling Dynamic Transportation Networks (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  448. P.I. Richards, Oper. Res. 4, 42–51 (1956)

    Article  Google Scholar 

  449. M. Rickert, K. Nagel, M. Schreckenberg, A. Latour, Physica A 231, 534–550 (1996)

    Article  Google Scholar 

  450. D.I. Robertson, Traffic Eng. Contr. 10, 276 (1969)

    Google Scholar 

  451. D.I. Robertson, TRRL Report No. LR 2530 (Transportation and Road Research Laboratory, Crowthorne, UK, 1969)

    Google Scholar 

  452. C. Roncoli, M. Papageorgiou, I. Papamichail, Transp. Res. C 57, 241–259 (2015)

    Article  Google Scholar 

  453. C. Roncoli,M. Papageorgiou, I. Papamichail, Transp. Res. C 57, 260–275 (2015)

    Article  Google Scholar 

  454. M. Saifuzzaman, Z. Zheng, Transp. Res. C 48, 379–403 (2014)

    Article  Google Scholar 

  455. G. Sala, P. Fabio, in Proceedings of 3rd World Congress on Intelligent Transport Systems (1996)

    Google Scholar 

  456. S.P. Sathiyan, S.S. Kumar, A.I. Selvakumar, Int. J. Innovative Technol. Exploring Eng. (IJITEE) 2, 89–96 (2013)

    Google Scholar 

  457. A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems (Elsevier Science, New York, 2011)

    MATH  Google Scholar 

  458. A. Schadschneider, W. Knospe, L. Santen, M. Schreckenberg, Physica A 346, 165–173 (2005)

    Article  Google Scholar 

  459. A. Schadschneider, T. Pöschel, R. Kühne, M. Schreckenberg, D.E. Wolf (eds.), Traffic and Granular Flow’05 (Springer, Heidelberg, 2007)

    Google Scholar 

  460. A. Schadschneider, M. Schreckenberg, J. Phys. A 26, L679–L684 (1993)

    Google Scholar 

  461. J.-D. Schmöcker, M.G.H. Bell, F. Kurauchi, H. Shimamoto, in [311] (2009), pp. 1–18

    Google Scholar 

  462. J. Schoen, A.D. May, W. Reilly, T. Urbanik, “Speed–Flow Relationships for Basic Freeway Segments”. Final Report, NCHRP Project 3–45, (JHK & Associates and Texas Transportation Institute, 1995)

    Google Scholar 

  463. M.J. Schofield, Traffic Eng. Contr. 27, 509–513 (1986)

    Google Scholar 

  464. M. Schönhof, D. Helbing, Transp. Sci. 41, 135–166 (2007)

    Article  Google Scholar 

  465. M. Schönhof, D. Helbing, Transp. Res. B 43, 784–797 (2009)

    Article  Google Scholar 

  466. M. Schönhof, M. Treiber, A. Kesting, D. Helbing, Transp. Res. Rec. 1999, 3–12 (2007)

    Article  Google Scholar 

  467. M. Schreckenberg, R. Barlović, W. Knospe, H. Klüpfel, in Computational Statistical Physics, ed. by K.H. Hoffmann, M. Schreiber (Springer, Berlin, 2001), pp. 113–126

    Google Scholar 

  468. M. Schreckenberg, A. Schadschneider, K. Nagel, N. Ito, Phys. Rev. E 51, 2939–2949 (1995)

    Article  Google Scholar 

  469. M. Schreckenberg, D.E. Wolf (eds.), Traffic and Granular Flow’ 97. Proceedings of the International Workshop on Traffic and Granular Flow (Springer, Singapore, 1998)

    Google Scholar 

  470. Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods (Prentice-Hall, Englewood Cliffs, 1985)

    Google Scholar 

  471. W. Shen, H.M. Zhang, Transp. Res. B 65, 1–17 (2014)

    Article  Google Scholar 

  472. S.E. Shladover, Veh. Syst. Dyn. 24, 551–595 (1995)

    Article  Google Scholar 

  473. S.E. Shladover, D. Su, X.-T. Lu, Transp. Res. Rec. 2324, 6370 (2012)

    Article  Google Scholar 

  474. V. Shvetsov, D. Helbing, Phys. Rev. E 59, 6328–6339 (1999)

    Article  Google Scholar 

  475. R. Sipahi, S.-I. Niculescu, Phil. Trans. R. Soc. A 368, 4563–4583 (2010)

    Article  Google Scholar 

  476. E. Smaragdis, M. Papageorgiou, Transp. Res. Rec. 1856, 74–86 (2003)

    Article  Google Scholar 

  477. M.J. Smith, Transp. Res. C 29, 131–147 (2013)

    Article  Google Scholar 

  478. M. Strating, Coordinated Signal Control for Urban Networks by Using MFD (M.Sc. Thesis) (Delft University of Technology, Delft, The Netherlands, 2010)

    Google Scholar 

  479. Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-I. Tadaki, S. Yukawa, New J. Phys. 10, 033001 (2008)

    Article  Google Scholar 

  480. N. Sugiyama, T. Nagatani, Physica A 392, 1848–1857 (2013)

    Article  Google Scholar 

  481. Y. Sugiyama, H. Yamada, Phys. Rev. E 55, 7749–7752 (1997)

    Article  Google Scholar 

  482. D. Sun, A. Clinet, A.M. Bayen, Transp. Res. B 45, 880–902 (2011)

    Article  Google Scholar 

  483. D.-H. Sun, X.-Y. Liao, G.H. Peng, Physica A 390, 631–635 (2011)

    Article  Google Scholar 

  484. Ch. Suwansirikul, T.L. Friesz, R.L. Tobin, Transp. Sci. 21, 254–263 (1987)

    Article  Google Scholar 

  485. H. Suzuki, JSAE Rev. 24, 403–410 (2003)

    Article  Google Scholar 

  486. D. Swaroop, J.K. Hedrick, IEEE Trans. Automat. Contr. 41, 349–357 (1996)

    Article  Google Scholar 

  487. D. Swaroop, J.K. Hedrick, S.B. Choi, IEEE Trans. Veh. Technol. 50, 150–161 (2001)

    Article  Google Scholar 

  488. W.Y. Szeto, L. O’Brien, M. O’Mahony, in [13] (2007), pp. 127–154

    Google Scholar 

  489. W.Y. Szeto, X. Jaber, S.C. Wong, Transp. Rev. 32, 491–518 (2012)

    Article  Google Scholar 

  490. S.I. Tadaki, K. Nishinari, M. Kikuchi, Y. Sugiyama, S. Yukawa, Physica A, 315, 156–162 (2002)

    Article  Google Scholar 

  491. M. Takayasu, H. Takayasu, Fractals 1, 860–866 (1993)

    Article  Google Scholar 

  492. A. Talebpour, H.S. Mahmassani, Transp. Res. C 71, 143–163 (2016)

    Article  Google Scholar 

  493. C.F. Tang, R. Jiang, Q.S. Wu, Physica A 377, 641–650 (2007)

    Article  Google Scholar 

  494. T.Q. Tang, C.Y. Li, Y.H. Wu, H.J. Huang, Physica A 390, 3362–3368 (2011)

    Article  Google Scholar 

  495. M.A.P. Taylor (ed.), Transportation and Traffic Theory in the 21st Century. Proceedings of the 15th International Symposium on Transportation and Traffic Theory (Elsevier Science, Amsterdam, 2002)

    Google Scholar 

  496. L.-J. Tian, H.-J. Huang, Z.-Y. Gao, Netw. Spat. Econ. 12, 589–608 (2012)

    Article  MathSciNet  Google Scholar 

  497. J.-f. Tian, Z.-z. Yuan, B. Jia, M.-h. Li, G.-j. Jiang, Physica A 391, 4476–4482 (2012)

    Article  Google Scholar 

  498. R.L. Tobin, T.L. Friesz, Transp. Sci. 22, 242–250 (1988)

    Article  Google Scholar 

  499. E. Tomer, L. Safonov, S. Havlin, Phys. Rev. Lett. 84, 382 (2000)

    Article  Google Scholar 

  500. E. Tomer, L. Safonov, N. Madar, S. Havlin, Phys. Rev. E 65, 065101 (R) (2002)

    Google Scholar 

  501. http://en.wikipedia.org/wiki/Traffic$_$simulation

  502. M. Treiber, D. Helbing, J. Phys. A Math. Gen. 32, L17–L23 (1999)

    Article  Google Scholar 

  503. M. Treiber, D. Helbing, Automatisierungstechnik 49, 478–484 (2001)

    Article  Google Scholar 

  504. M. Treiber, D. Helbing, Phys. Rev. E 68, 046119 (2003)

    Article  Google Scholar 

  505. M. Treiber, D. Helbing, Eur. Phys. J. B 68, 607–618 (2009)

    Article  Google Scholar 

  506. M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 59, 239–253 (1999)

    Article  Google Scholar 

  507. M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 62, 1805–1824 (2000)

    Article  Google Scholar 

  508. M. Treiber, A. Kesting, Verkehrsdynamik und -simulation: Daten, Modelle und Anwendungen der Verkehrsflussdynamik (Springer, Heidelberg, Dordrecht, London, New York, 2010)

    Book  MATH  Google Scholar 

  509. M. Treiber, A. Kesting, Traffic Flow Dynamics (Springer, Heidelberg, New York, Dordrecht, London, 2013)

    Book  MATH  Google Scholar 

  510. M. Treiber, A. Kesting, D. Helbing, Phys. Rev. E 74, 016123 (2006)

    Article  Google Scholar 

  511. M. Treiber, A. Kesting, D. Helbing, Transp. Res. B 44, 983–1000 (2010)

    Article  Google Scholar 

  512. J. VanderWerf, S.E. Shladover, M.A. Miller, N. Kourjanskaia, Transp. Res. Rec. 1800, 78–84 (2002)

    Article  Google Scholar 

  513. H.R. Varia, P.J. Gundaliya, S.L. Dhingra, Res. Transp. Econ. 38, 35–44 (2013)

    Article  Google Scholar 

  514. J. Vasic, H.J. Ruskin, Physica A 391, 2720–2729 (2012)

    Article  Google Scholar 

  515. http://de.wikipedia.org/wiki/VISSIM

  516. P. Wagner, Transp. Res. B 46, 1384–1392 (2012)

    Article  Google Scholar 

  517. P. Wagner, in Autonomes Fahren, ed. by M. Maurer, J.Ch. Gerdes, B. Lenz, H. Winner (Springer, Berlin 2015), pp. 313–330

    Google Scholar 

  518. P. Wagner, R. Nippold, S. Gabloner, M. Margreiter, Chaos Solitons Fractals, 1–9 (2016)

    Google Scholar 

  519. J. Wahle, A.L.C. Bazzan, F. Klugl, M. Schreckenberg, Physica A 287, 669–681 (2000)

    Article  Google Scholar 

  520. J. Wahle, R. Chrobok, A. Pottmeier, M. Schreckenberg, Netw. Spat. Econ. 2, 371–386 (2002)

    Article  Google Scholar 

  521. M. Wang, W. Daamen, S.P. Hoogendoorn, B. van Arem, Transp. Res. C 40, 271–289 (2014)

    Article  Google Scholar 

  522. M. Wang, W. Daamen, S.P. Hoogendoorn, B. van Arem, Transp. Res. C 40, 290–311 (2014)

    Article  Google Scholar 

  523. M. Wang, W. Daamen, S.P. Hoogendoorn, B. van Arem, R. Happee, Transp. Res. C 58, 73–92 (2015)

    Article  Google Scholar 

  524. J. Wang, W. Deng, in Proc. TRB 92nd Annual Meeting, Paper # 13-0836 (TRB, Washington DC, 2013)

    Google Scholar 

  525. T. Wang, Z.Y. Gao, W.Y. Zhang, J. Zhang, S.B. Li, Nonlinear Dyn. 77, 635–642 (2014)

    Article  Google Scholar 

  526. T. Wang, Z.Y. Gao, J. Zhang, Nonlinear Dyn. 73, 2197–2205 (2013)

    Article  Google Scholar 

  527. D.Z. Wang, H. Liu, in Proc. TRB 92nd Annual Meeting, Paper # 13-1443 (TRB, Washington DC, 2013)

    Google Scholar 

  528. S. Wang, Q. Meng, H. Yang, Transp. Res. B 50, 42–60 (2013)

    Article  Google Scholar 

  529. J.G.Wardrop, in Proc. of Inst. of Civil Eng. II, vol. 1, pp. 325–378 (1952)

    Google Scholar 

  530. J.A. Wattleworth, Highway Res. Rec. 157, 1–21 (1967)

    Google Scholar 

  531. J.A. Wattleworth, D.S. Berry, Highway Res. Rec. 89, 1–25 (1965)

    Google Scholar 

  532. C. Wei, Y. Asakura, T. Iryo, J. Adv. Transp. 46, 222–235 (2012)

    Google Scholar 

  533. B.-W. Wie, T.L. Friesz, R.L. Tobin, Transp. Res. B 24, 431–442 (1990)

    Article  Google Scholar 

  534. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  535. G.B. Whitham, Proc. R. Soc. Lond. A 428, 49 (1990)

    Article  Google Scholar 

  536. R. Wiedemann, Simulation des Verkehrsflusses (University of Karlsruhe, Karlsruhe, 1974)

    Google Scholar 

  537. R.E. Wilson, IMA J. Appl. Math. 66, 509–537 (2001)

    Article  MathSciNet  Google Scholar 

  538. R.E. Wilson, Phil. Trans. R. Soc. A 366, 2017–2032 (2008)

    Article  Google Scholar 

  539. D.E. Wolf, Physica A 263, 438–451 (1999)

    Article  MathSciNet  Google Scholar 

  540. D.E. Wolf, M. Schreckenberg, A. Bachem (eds.), Traffic and Granular Flow. Proceedings of the International Workshop on Traffic and Granular Flow (World Scientific, Singapore, 1995)

    Google Scholar 

  541. X. Wu, Y. Nie, in Proc. TRB 92nd Annual Meeting, Paper # 13-4100 (TRB, Washington DC, 2013)

    Google Scholar 

  542. C. Xie, S.T. Waller, Transp. Res. B 46, 1023–1042 (2012)

    Article  Google Scholar 

  543. C. Xiong, X. Chen, X. He, X. Lin, L. Zhang, Transp. Res. C 64, 148–163 (2016)

    Article  Google Scholar 

  544. X. Xu, A. Chen, S. Kitthamkesorn, H. Yang, H.K. Lo, Transp. Res. B 81, 686–703 (2015)

    Article  Google Scholar 

  545. H. Yang, M.G.H. Bell, Transp. Res. B 31, 303–314 (1997)

    Article  Google Scholar 

  546. H. Yang, M.G.H. Bell, Transp. Rev. 18, 257–278 (1998)

    Article  Google Scholar 

  547. H. Yang, M.G.H. Bell, Transp. Res. B 32, 539–545 (1998)

    Article  Google Scholar 

  548. H. Yang, M.G.H. Bell, Q. Menga, Transp. Res. B 34, 255–275 (2000)

    Article  Google Scholar 

  549. J. Yang, G. Jiang, Transp. Res. C 47, 168–178 (2014)

    Article  Google Scholar 

  550. H. Yang, W.-L. Jin Transp. Res. C 53, 19–34 (2015)

    Google Scholar 

  551. D. Yang, P. Jin, Y. Pu, B. Ran, Eur. Phys. J. B 86, 92 (2013)

    Article  Google Scholar 

  552. H. Yang, Q. Menga, M.G.H. Bell, Transp. Sci. 35, 107–123 (2001)

    Article  Google Scholar 

  553. B. Yang, Ch. Monterola, Phys. Rev. E 92, 042802 (2015)

    Article  Google Scholar 

  554. B. Yang, Ch. Monterola, Transp. Res. C 72, 283–305 (2016)

    Article  Google Scholar 

  555. H. Yang, X. Wang, Y. Yin, Transp. Res. B 46, 1295–1307 (2012)

    Article  Google Scholar 

  556. M. Yildirimoglu, M. Ramezani, N. Geroliminis, Transp. Res. C 59, 404–420 (2015)

    Article  Google Scholar 

  557. Y. Yufei, J.W.C. van Lint, R.E. Wilson, F. van Wageningen-Kessels, S.P. Hoogendoorn, IEEE Trans. ITS 13, 59–70 (2012)

    Google Scholar 

  558. C. Zhang, X. Chen, A. Sumalee, Transp. Res. B 45, 534–552 (2011)

    Article  Google Scholar 

  559. K. Zhang, H.S. Mahmassani, C.-C. Lu, Transp. Res. Rec. 2085, 86–94 (2008)

    Article  Google Scholar 

  560. K. Zhang, H.S. Mahmassani, C.-C. Lu, Transp. Res. C 27, 189–204 (2013)

    Article  Google Scholar 

  561. H.M. Zhang, S.G. Ritchie, Transp. Res. C 5, 273–286 (1997)

    Article  Google Scholar 

  562. M. Zhang, D.H. Sun, W.N. Liu, Nonlinear Dyn. 81, 1623–1633 (2015)

    Article  Google Scholar 

  563. M. Zhang, D.H. Sun, W.N. Liu, M. Zhao, S.L. Chen, Physica A 422, 16–24 (2015)

    Article  Google Scholar 

  564. M. Zhang, D.H. Sun, C. Tian, Nonlinear Dyn. 77, 839–847 (2014)

    Article  Google Scholar 

  565. D. Zhao, X. Bai, F.-Y. Wang, J. Xu, W. Yu, IEEE Trans. ITS 12, 990–999 (2011)

    Google Scholar 

  566. J. Zhao, Y. Liu, Transp. Res. C 73, 219–238 (2017)

    Article  Google Scholar 

  567. L. Zheng, Z. He, T. He, Transp. Res. C 75 136–167 (2017)

    Article  Google Scholar 

  568. R.X. Zhong, A. Sumalee, T.L. Friesz, W.H.K. Lam, Transp. Res. B 45, 1035–1061 (2011)

    Article  Google Scholar 

  569. R. Zhong, A. Sumalee, T. Maruyama, J. Adv. Transp. 46, 191–221 (2012)

    Google Scholar 

  570. X. Zhou, H.S. Mahmassani, K. Zhang, Transp. Res. C 16, 167–186 (2008)

    Article  Google Scholar 

  571. J. Zhou, H. Peng, IEEE Trans. Intell. Transp. Syst. 6, 229–237 (2005)

    Article  Google Scholar 

  572. J. Zhou, Z.-K. Shi, Nonlinear Dyn. 83, 1217–1236 (2015)

    Article  Google Scholar 

  573. J. Zhou, Z.-K. Shi, C.-P. Wang, Nonlinear Dyn. 1–20 (2016)

    Google Scholar 

  574. F. Zhu, S.V. Ukkusuri, IEEE Trans. ITS 18, 282–291 (2017)

    Google Scholar 

  575. W.X. Zhu, L.D. Zhang, Int. J. Mod. Phys. C 23, 1250025 (2012)

    Article  Google Scholar 

  576. A.K. Ziliaskopoulos, D. Kotzinos, H.S. Mahmassani, Transp. Res. C 5, 95–107 (1997)

    Article  Google Scholar 

  577. A.K. Ziliaskopoulos, H.S. Mahmassani, Transp. Res. Rec. 1408, 94–100 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Kerner, B.S. (2017). Failure of Generally Accepted Classical Traffic Flow Theories. In: Breakdown in Traffic Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54473-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54473-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54471-6

  • Online ISBN: 978-3-662-54473-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics