From Qualitative to Quantitative Semantics

By Change of Base
  • James LairdEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10203)


We give a general description of the transition from qualitative models of programming languages to quantitative ones, as a change of base for enriched categories. This is induced by a monoidal functor from the category of coherence spaces to the category of modules over a complete semiring \({\mathcal {R}}\). Using the properties of this functor, we characterise the requirements for the change of base to preserve the structure of a Lafont category (model of linear type theory with free exponential), and thus to give an adequate semantics of erratic PCF with scalar weights from \({\mathcal {R}}\). Moreover, this model comes with a meaning-preserving functor from the original, qualitative one, which we may use to interpret side-effects such as state. As an example, we show that the game semantics of Idealized Algol bears a natural enrichment over the category of coherence spaces, and thus gives rise by change of base to a \({\mathcal {R}}\)-weighted model, which is fully abstract. We relate this to existing categories of probabilistic games and slot games.


  1. 1.
    Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game semantics for Idealized Algol with active expressions. In: O’Hearn, P.W., Tennent, R. (eds.) Algol-like languages. Birkhauser (1997)Google Scholar
  2. 2.
    Baillot, P., Danos, V., Ehrhard, T., Regnier, L.: AJM games are a model of classical linear logic. In: Proceedings of the Twelfth International Symposium on Logic in Computer Science, LICS 1997 (1997)Google Scholar
  3. 3.
    Berry, G.: Stable models of typed \(\lambda \)-calculi. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 72–89. Springer, Heidelberg (1978). doi: 10.1007/3-540-08860-1_7 CrossRefGoogle Scholar
  4. 4.
    Berry, G., Curien, P.-L.: Sequential algorithms on concrete data structures. Theoret. Comput. Sci. 20, 265–321 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Calderon, A., McCusker, G.: Understanding game semantics through coherence spaces. Electron. Notes Theoret. Comput. Sci. 265, 231–244 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Churchill, M., Laird, J., McCusker, G.: Imperative programs as proofs via game semantics. Ann. Pure and Appl. Logic 64, 27–94 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cruttwell, G.: Normed Spaces and Change of Base for Enriched Categories. Ph.D. thesis, Dalhousie University (2008)Google Scholar
  8. 8.
    Danos, V., Harmer, R.: Probabilistic game semantics. ACM Trans. Comput. Logic 3(3), 359–382 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ehrhard, T.: Hypercoherence: a strongly stable model of linear logic. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. Cambridge University Press, Cambridge (1995)Google Scholar
  10. 10.
    Ghica, D.: Slot games: a qunatitative model of computation. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 85–97 (2005)Google Scholar
  11. 11.
    Ghica, D., McCusker, G.: The regular language semantics of second-order Idealised Algol. Theoret. Comput. Sci. 309, 469–502 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  13. 13.
    Harmer, R., McCusker, G.: A fully abstract games semantics for finite non-determinism. In: Proceedings of the Fourteenth Annual Symposium on Logic in Computer Science, LICS 1999. IEEE Computer Society Press (1998)Google Scholar
  14. 14.
    Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, II and III. Inf. Comput. 163, 285–408 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Janelidze, G., Kelly, G.M.: A note on actions of a monoidal category. Theor. Appl. Categories 9(4), 61–91 (2001)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lafont, Y.: Logiques, catégories et machines. Ph.D thesis, Université Paris 7 (1988)Google Scholar
  17. 17.
    Laird J.: A categorical semantics of higher-order store. In: Proceedings of CTCS 2002, number 69 in ENTCS. Elsevier (2002)Google Scholar
  18. 18.
    Laird, J.: Fixed points in quantitative semantics. In: Proceedings of LICS 2016, pp. 347–356. ACM (2016)Google Scholar
  19. 19.
    Laird, J., Manzonetto, G., McCusker, G.: Constructing differential categories and deconstructing categories of games. Inf. Comput. 222, 247–264 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models of typed lambda-calculi. In: Proceedings of LICS 2013 (2013)Google Scholar
  21. 21.
    Lamarche, F.: Quantitative domains and infinitary algebras. Theoret. Comput. Sci. 94, 37–62 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Melliès, P.-A., Tabareau, N., Tasson, C.: An explicit formula for the free exponential modality of linear logic. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 247–260. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02930-1_21 CrossRefGoogle Scholar
  23. 23.
    Simpson, A., Plotkin, G.: Complete axioms for categorical fixed-point operators. In: Proceedings of LICS 2000, pp. 30–41. IEEE Press (2000)Google Scholar
  24. 24.
    Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). doi: 10.1007/3-540-17906-2_31 CrossRefGoogle Scholar
  25. 25.
    Winskel, G.: Concurrent strategies. In: Proceedings of LICS 2011 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of BathBathUK

Personalised recommendations