Advertisement

Die Neurobiologie und ihre Implikationen für die Sexualtherapie

  • Tillmann Krüger
Chapter

Zusammenfassung

Die letzten beiden Dekaden neurowissenschaftlicher und hier vor allem bildgebender Forschung haben eindrücklich belegen können, dass psychotherapeutische Interventionen zu funktionellen und strukturellen Veränderungen des Gehirns und damit zu Korrekturen im Erleben und Verhalten führen können (Schiepek 2011). Auch wenn im Erwachsenenalter die Dynamik eines Neugeborenen oder eines Jugendlichen in der Pubertät nicht mehr erreicht wird, so bleibt das Gehirn bis ins hohe Alter plastisch und damit veränderbar (neuronale Plastizität). Man geht davon aus, dass sich neuronale Netzwerke in erfahrungsabhängiger Weise verändern können und dass stimulierende Bedingungen in Form von z. B. körperlichen, sozialen oder kognitiven Anreizen die Voraussetzung dafür bilden (Greifzu et al. 2014). Auf das therapeutische Setting übertragen: Sobald also zwei Personen miteinander kommunizieren und dies über einen gewissen Zeitraum und unter Anwendung verschiedener therapeutischer Techniken und Interventionen tun, werden sie gewissermaßen zu Neurobiologen, die mit ihrem Handeln bis auf molekulare Ebene wirksam sind. Jeder Psychotherapeut sollte sich darüber im Klaren sein, dass er es neben dem Klienten oder dem Paar auch mit nahezu 100.000.000.000 Nervenzellen zu tun hat, von denen jede einzelne Nervenzelle über etwa 10.000 Synapsen in intensivem Austausch mit anderen Neuronen steht. Welche Herausforderung und Komplexität und zugleich Trost für die vielen Phänomene, die für Therapeuten wie Klienten nicht immer verstehbar sind. Die „sprechende Medizin“ und ihre intensive Weiterentwicklung hinsichtlich störungsübergreifender und störungsspezifischer Techniken haben sich von einem belächeltem Nischendasein zu einer in Wissenschaft und Gesellschaft anerkannten und bei Patienten intensiv nachgefragten Therapieform entwickelt. Klinische und experimentelle Studien haben zeigen können, dass die Effektstärken von pharmakologischen und psychotherapeutischen Interventionen vergleichbar sind und dass die Kombination beider Verfahren oftmals den größtmöglichen Nutzen für Patienten herbeiführt (Aigner und Lenz 2011; De Maat et al. 2007). Gleichzeitig wird klar, dass mit biologischen und psychologischen Therapieformen nicht immer die gleichen Zielstrukturen angesteuert werden, sondern dass hier durchaus Unterschiede existieren. So scheint vereinfachend gesagt, die Wirksamkeit von z. B. Antidepressiva bei Depressionen mehrheitlich über eine Modulation subkortikaler Strukturen wie der Amygdala, Hirnstamm und limbischem System erklärbar zu sein (bottom-up), während eine kognitive Verhaltenstherapie zunächst vor allem kortikale und hier vor allem präfrontale Prozesse anspricht und erst darüber Einfluss auf emotionale Prozesse bzw. die Aktivität der Amygdala und assoziierten Strukturen ausübt (top-down) (DeRubeis et al. 2008; Hartley und Phelps 2010). Bei emotions- und erlebnisfokussierten Ansätzen könnte dies wiederum anders sein, sodass hier angesichts der Vielzahl unterschiedlicher Therapiemethoden vorschnelle Verallgemeinerungen problematisch sind.

Literatur

  1. Acevedo, B. P., Aron, A., Fisher, H. E., & Brown, L. L. (2011). Neural correlates of long-term intense romantic love. Social Cognitive and Affective Neuroscience, nsq092, 1–15.Google Scholar
  2. Aigner, M., & Lenz, G. (2011). Psychpharmakotherapie und Psychotherapie. In G. Schiepek (Hrsg.), Neurobiologie der Psychotherapie (2. Aufl., S. 619–627). Stuttgart: Schattauer.Google Scholar
  3. Al Abdulmohsen, T., & Krüger, T. H. C. (2011). The contribution of muscular and auditory pathologies to the symptomatology of autism. Medical Hypotheses, 77(6), 1038–1047.PubMedCrossRefGoogle Scholar
  4. Alvergne, A., & Lummaa, V. (2009). Does the contraceptive pill alter mate choice in humans? Trends in Ecology and Evolution, 25, 171–179.PubMedCrossRefGoogle Scholar
  5. Arnow, B., Millheiser, L., Garrett, A., Polan, M. L., Glover, G., Hill, K., & Smart, T. (2009). Women with hypoactive sexual desire disorder compared to normal females: A functional magnetic resonance imaging study. Neuroscience, 158(2), 484–502.PubMedCrossRefGoogle Scholar
  6. Bales, K. L., Perkeybile, A. M., Conley, O. G., Lee, M. H., Guoynes, C. D., Downing, G. M., … Mendoza, S. P. (2013). Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. Biological Psychiatry, 74(3), 180–188.PubMedCrossRefGoogle Scholar
  7. Balthazart, J., & Ball, G. F. (2006). Is brain estradiol a hormone or a neurotransmitter? Trends in Neurosciences, 29(5), 241–249.PubMedCrossRefGoogle Scholar
  8. Bancroft, J. (1999). Central inhibition of sexual response in the male: A theoretical perspective. Neuroscience and Biobehavioral Reviews, 23(6), 763–784.PubMedCrossRefGoogle Scholar
  9. Barnes, J. L., Hill, T., Langer, M., Martinez, M., & Santos, L. R. (2008). Helping behaviour and regard for others in capuchin monkey (Cebus apella). Biology Letters, 4, 638–640.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barsaglini, A., Sartori, G., Benetti, S., Pettersson-Yeo, W., & Mechelli, A. (2014). The effects of psychotherapy on brain function: A systematic and critical review. Progress in Neurobiology, 114, 1–14.PubMedCrossRefGoogle Scholar
  11. Bartz, J., Simeon, D., Hamilton, H., Kim, S., Crystal, S., Braun, A., … Hollander, E. (2011). Oxytocin can hinder trust and cooperation in borderline personality disorder. Social Cognitive and Affective Neuroscience, 6, 556–563.PubMedCrossRefGoogle Scholar
  12. Beamer, W., Bermant, G., & Clegg, M. (1969). Copulatory behaviour of the ram, Ovis aries. II: Factors affecting copulatory satiation. Animal Behaviour, 17(4), 706–711.PubMedCrossRefGoogle Scholar
  13. Behnia, B., Heinrichs, M., Bergmann, W., Jung, S., Germann, J., Schedlowski, M., & Krüger, T. H. C. (2014). Differential effects of intranasal oxytocin on sexual experiences and partner interactions in couples. Hormones and Behavior, 65(3), 308–318.PubMedCrossRefGoogle Scholar
  14. Benkert, O., & Hippius, H. (2005). Antidepressiva. In O. Benkert & H. Hippius (Hrsg.), Kompendium der Psychiatrischen Pharmakotherapie (5. Aufl., S. 1–100). Berlin: Springer.Google Scholar
  15. Bermant, G., Clegg, M., & Beamer, W. (1969). Copulatory behaviour of the ram, Ovis aries. In: A normative study. Animal Behaviour, 17(4), 700–705.PubMedCrossRefGoogle Scholar
  16. Bertsch, K., Gamer, M., Schmidt, B., Schmidinger, I., Walther, S., Kästel, T., & Herpertz, S. C. (2013). Oxytocin and reduction of social threat hypersensitivity in women with borderline personality disorder. American Journal of Psychiatry, 170(10), 1169–1177.PubMedCrossRefGoogle Scholar
  17. Bianchi‐Demicheli, F., Cojan, Y., Waber, L., Recordon, N., Vuilleumier, P., & Ortigue, S. (2011). Neural bases of hypoactive sexual desire disorder in women: An event‐related fMRI study. The Journal of Sexual Medicine, 8(9), 2546–2559.PubMedCrossRefGoogle Scholar
  18. Bohus, M., Mauchnik, J., & Schmahl, C. (2009). Neurobiologische Grundlagen von psychotherapeutischen Interventionen. Zeitschrift für Psychiatrie, Psychologie und Psychotherapie, 57(2), 97–104.CrossRefGoogle Scholar
  19. Bouton, M. E. (2004). Context and behavioral processes in extinction. Learning & Memory, 11(5), 485–494.CrossRefGoogle Scholar
  20. Brody, S., & Krüger, T. H. C. (2006). The post-orgasmic prolactin increase following intercourse is greater than following masturbation and suggests greater satiety. Biological Psychology, 71(3), 312–315.PubMedCrossRefGoogle Scholar
  21. Brunet, A., Orr, S. P., Tremblay, J., Robertson, K., Nader, K., & Pitman, R. K. (2008). Effect of post-retrieval propranolol on psychophysiologic responding during subsequent script-driven traumatic imagery in post-traumatic stress disorder. Journal of Psychiatric Research, 42(6), 503–506.PubMedCrossRefGoogle Scholar
  22. Bryant, R., Felmingham, K., Kemp, A., Das, P., Hughes, G., Peduto, A., & Williams, L. (2007). Amygdala and ventral anterior cingulate activation predicts treatment response to cognitive behaviour therapy for post-traumatic stress disorder. Psychological Medicine, 38(4), 555–562.PubMedGoogle Scholar
  23. Burri, A., Heinrichs, M., Schedlowski, M., & Krüger, T. H. (2008). The acute effects of intranasal oxytocin administration on endocrine and sexual function in males. Psychoneuroendocrinology, 33(5), 591–600.PubMedCrossRefGoogle Scholar
  24. Cain, C. K., & LeDoux, J. E. (2007). Escape from fear: A detailed behavioral analysis of two atypical responses reinforced by CS termination. Journal of Experimental Psychology: Animal Behavior Processes, 33(4), 451–463.PubMedGoogle Scholar
  25. Cain, C. K., Maynard, G. D., & Kehne, J. H. (2012). Targeting memory processes with drugs to prevent or cure PTSD. Expert Opinion on Investigational Drugs, 21(9), 1323–1350.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carmichael, M. S., Warburton, V. L., Dixen, J., & Davidson, J. M. (1994). Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Archives of Sexual Behavior, 23(1), 59–79.PubMedCrossRefGoogle Scholar
  27. Caruso, S., Agnello, C., Malandrino, C., Lo Presti, L., Cicero, C., & Cianci, S. (2014). Do hormones influence women's sex? Sexual activity over the menstrual cycle. The Journal of Sexual Medicine, 11(1), 211–221.PubMedCrossRefGoogle Scholar
  28. Corona, G., Mannucci, E., Jannini, E. A., Lotti, F., Ricca, V., Monami, M., & Forti, G. (2009). Hypoprolactinemia: A New Clinical Syndrome in Patients with Sexual Dysfunction. The Journal of Sexual Medicine, 6(5), 1457–1466.PubMedCrossRefGoogle Scholar
  29. Corona, G., Wu, F. C., Rastrelli, G., Lee, D. M., Forti, G., O'Connor, D. B., & Boonen, S. (2014). Low prolactin is associated with sexual dysfunction and psychological or metabolic disturbances in middle‐aged and elderly men: The European Male Aging Study (EMAS). The Journal of Sexual Medicine, 11(1), 240–253.PubMedCrossRefGoogle Scholar
  30. Darwin, C. (1872). The expression of emotion in men and animals. Murray: London.CrossRefGoogle Scholar
  31. De Maat, S. M., Dekker, J., Schoevers, R. A., & De Jonghe, F. (2007). Relative efficacy of psychotherapy and combined therapy in the treatment of depression: A meta-analysis. European Psychiatry, 22(1), 1–8.PubMedCrossRefGoogle Scholar
  32. Delgado, M. R., Jou, R. L., LeDoux, J. E., & Phelps, E. A.. (2009). Avoiding negative outcomes: Tracking the mechanisms of avoidance learning in humans during fear conditioning. In P. E. Phillips, J. J. Kim, & D. Lee (Hrsg.), Research Topics: Neuroeconomics (S. 72–80). New York: Frontiers.Google Scholar
  33. DeRubeis, R. J., Siegle, G. J., & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9(10), 788–796.PubMedPubMedCentralCrossRefGoogle Scholar
  34. DGPPN, BÄK, KBV, AWMF, AkdÄ, BPtK, BApK, DAGSHG, DEGAM, DGPM, DGPs, DGRW (Hrsg.) für die Leitli- niengruppe Unipolare Depression*. S3-Leitlinie/Nationale VersorgungsLeitlinie Unipolare Depression - Langfas- sung, 2. Auflage, Version 1, November 2015. Available from: www.depression.versorgungsleitlinien.de; [cited: tt.mm.jjjj]; DOI:  10.6101/AZQ/000262 .
  35. Difede, J., Cukor, J., Wyka, K., Olden, M., Hoffman, H., Lee, F. S., & Altemus, M. (2014). D-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: A pilot randomized clinical trial. Neuropsychopharmacology, 39(5), 1052–1058.PubMedCrossRefGoogle Scholar
  36. Egli, M., Leeners, B., & Krüger, T. H. (2010). Prolactin secretion patterns: Basic mechanisms and clinical implications for reproduction. Reproduction, 140(5), 643–654.PubMedCrossRefGoogle Scholar
  37. Erk, S., Mikschl, A., Stier, S., Ciaramidaro, A., Gapp, V., Weber, B., & Walter, H. (2010). Acute and sustained effects of cognitive emotion regulation in major depression. The Journal of Neuroscience, 30(47), 15726–15734.PubMedCrossRefGoogle Scholar
  38. Etkin, A., Pittenger, C., Polan, H. J., & Kandel, E. R. (2005). Toward a neurobiology of psychotherapy: Basic science and clinical applications. The Journal of Neuropsychiatry and Clinical Neurosciences, 17(2), 145–158.PubMedCrossRefGoogle Scholar
  39. Feldman, R. (2016). The neurobiology of human attachments. Trends in Cognitive Sciences, 21(2), 80–99.PubMedCrossRefGoogle Scholar
  40. Finkelstein, J. S., Lee, H., Burnett-Bowie, S.-A. M., Pallais, J. C., Yu, E. W., Borges, L. F., & Thomas, B. J. (2013). Gonadal steroids and body composition, strength, and sexual function in men. New England Journal of Medicine, 369(11), 1011–1022.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Finzi, E., & Rosenthal, N. E. (2014). Treatment of depression with onabotulinumtoxinA: A randomized, double-blind, placebo controlled trial. Journal of Psychiatric Research, 52, 1–6.PubMedCrossRefGoogle Scholar
  42. Fiorino, D. F., Coury, A., & Phillips, A. G. (1997). Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats. The Journal of Neuroscience, 17(12), 4849–4855.PubMedGoogle Scholar
  43. Fisher, H. E., Aron, A., & Brown, L. L. (2006). Romantic love: A mammalian brain system for mate choice. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361(1476), 2173–2186.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fogel, A. (2013). Selbstwahrnehmung und Embodiment in der Körperpsychotherapie: Vom Körpergefühl zur Kognition. Stuttgart: Schattauer.Google Scholar
  45. Georgiadis, J. R., & Kringelbach, M. L. (2012). The human sexual response cycle: Brain imaging evidence linking sex to other pleasures. Progress in Neurobiology, 98(1), 49–81.PubMedCrossRefGoogle Scholar
  46. Georgiadis, J. R., Kortekaas, R., Kuipers, R., Nieuwenburg, A., Pruim, J., Reinders, A., & Holstege, G. (2006). Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women. European Journal of Neuroscience, 24(11), 3305–3316.PubMedCrossRefGoogle Scholar
  47. Georgiadis, J. R., Reinders, A. S., Van Der Graaf, F. H., Paans, A. M., & Kortekaas, R. (2007). Brain activation during human male ejaculation revisited. Neuroreport, 18(6), 553–557.PubMedCrossRefGoogle Scholar
  48. Georgiadis, J. R., Reinders, A., Paans, A. M., Renken, R., & Kortekaas, R. (2009). Men versus women on sexual brain function: Prominent differences during tactile genital stimulation, but not during orgasm. Human Brain Mapping, 30(10), 3089–3101.PubMedCrossRefGoogle Scholar
  49. Georgiadis, J. R., Farrell, M. J., Boessen, R., Denton, D. A., Gavrilescu, M., Kortekaas, R., & Egan, G. F. (2010). Dynamic subcortical blood flow during male sexual activity with ecological validity: A perfusion fMRI study. NeuroImage, 50(1), 208–216.PubMedCrossRefGoogle Scholar
  50. Gizewski, E. R., Krause, E., Karama, S., Baars, A., Senf, W., & Forsting, M. (2006). There are differences in cerebral activation between females in distinct menstrual phases during viewing of erotic stimuli: A fMRI study. Experimental Brain Research, 174(1), 101–108.PubMedCrossRefGoogle Scholar
  51. Goodman, M., Carpenter, D., Tang, C. Y., Goldstein, K. E., Avedon, J., Fernandez, N., & Triebwasser, J. (2014). Dialectical behavior therapy alters emotion regulation and amygdala activity in patients with borderline personality disorder. Journal of Psychiatric Research, 57, 108–116.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Greenberg, L. S. (2011). Emotion-Focused Therapy. Washington: American Psychological Association.Google Scholar
  53. Greifzu, F., Pielecka-Fortuna, J., Kalogeraki, E., Krempler, K., Favaro, P. D., Schlüter, O. M., & Löwel, S. (2014). Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. Proceedings of the National Academy of Sciences, 111(3), 1150–1155.CrossRefGoogle Scholar
  54. Hamann, S., Herman, R. A., Nolan, C. L., & Wallen, K. (2004). Men and women differ in amygdala response to visual sexual stimuli. Nature Neuroscience, 7(4), 411–416.PubMedCrossRefGoogle Scholar
  55. Hartley, C. A., & Phelps, E. A. (2010). Changing fear: The neurocircuitry of emotion regulation. Neuropsychopharmacology, 35(1), 136–146.PubMedCrossRefGoogle Scholar
  56. Hofmann, S. G., Meuret, A. E., Smits, J. A., Simon, N. M., Pollack, M. H., Eisenmenger, K., & Otto, M. W. (2006). Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. Archives of General Psychiatry, 63, 298–304.PubMedCrossRefGoogle Scholar
  57. James, W. (1890). Principles of Psychology. Dover: New York.Google Scholar
  58. Jaspers, L., Feys, F., Bramer, W. M., Franco, O. H., Leusink, P., & Laan, E. T. (2016). Efficacy and safety of flibanserin for the treatment of hypoactive sexual desire disorder in women: A systematic review and meta-analysis. JAMA internal medicine, 176(4), 453–462.PubMedCrossRefGoogle Scholar
  59. Karama, S., Lecours, A. R., Leroux, J. M., Bourgouin, P., Beaudoin, G., Joubert, S., & Beauregard, M. (2002). Areas of brain activation in males and females during viewing of erotic film excerpts. Human Brain Mapping, 16(1), 1–13.PubMedCrossRefGoogle Scholar
  60. Kindt, M., Soeter, M., & Vervliet, B. (2009). Beyond extinction: Erasing human fear responses and preventing the return of fear. Nature Neuroscience, 12(3), 256–258.PubMedCrossRefGoogle Scholar
  61. Kroes, M. C. W., Tendolkar, I., Van Wingen, G. A., Van Waarden, J. A., Strange, B. A., & Fernández, G.. (2013). An electroconvulsive therapy procedure impairs reconsolidation of episodic memories in humans. Nature Neuroscience, 17, 204–206.PubMedCrossRefGoogle Scholar
  62. Krüger, T. H. C., Haake, P., Hartmann, U., Schedlowski, M., & Exton, M. S. (2002). Orgasm-induced prolactin secretion: Feedback control of sexual drive?. Neuroscience & Biobehavioral Reviews, 26(1), 31–44.CrossRefGoogle Scholar
  63. Krüger, T. H. C., Haake, P., Chereath, D., Knapp, W., Janssen, O., Exton, M., & Hartmann, U. (2003). Specificity of the neuroendocrine response to orgasm during sexual arousal in men. Journal of Endocrinology, 177(1), 57–64.PubMedCrossRefGoogle Scholar
  64. Krüger, T. H. C., Haake, P., Haverkamp, J., Kramer, M., Exton, M., Saller, B., & Schedlowski, M. (2003). Effects of acute prolactin manipulation on sexual drive and function in males. Journal of Endocrinology, 179(3), 357–365.PubMedCrossRefGoogle Scholar
  65. Krüger, T. H. C., Schiffer, B., Eikermann, M., Haake, P., Gizewski, E., & Schedlowski, M. (2006). Serial neurochemical measurement of cerebrospinal fluid during the human sexual response cycle. European Journal of Neuroscience, 24(12), 3445–3452.PubMedCrossRefGoogle Scholar
  66. Krüger, T. H. C., Leeners, B., Naegeli, E., Schmidlin, S., Schedlowski, M., Hartmann, U., & Egli, M. (2012). Prolactin secretory rhythm in women: Immediate and long-term alterations after sexual contact. Human reproduction, 27(4), 1139–1143.PubMedCrossRefGoogle Scholar
  67. Krüger, T.H., Keil, L., Jung, S., Kahl, K.G., Wittfoth, M., Leeners, B., Hartmann, U. (2017) Lack of Increase in Sexual Drive and Function After Dopaminergic Stimulation in Women. Journal of Sex and Marital Therapy. Apr 13:0. doi:  10.1080/0092623X.2017.1318797.
  68. Krüger, T.H.C., Kneer, J. (2017). Neurobiologische Grundlagen der Sexualität und ihrer Probleme. Der Nervenarzt, 88(5), 451–458.Google Scholar
  69. Labuschagne, I., Phan, K. L., Wood, A., Angstadt, M., Chua, P., Heinrichs, M., & Nathan, P. J. (2010). Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology, 35(12), 2403–2413.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lanius, R. A., Williamson, P. C., Densmore, M., Boksman, K., Gupta, M. A., Neufeld, R., … Menon, R. S. (2001). Neural correlates of traumatic memories in posttraumatic stress disorder: A functional MRI investigation. American Journal of Psychiatry, 158, 1920–1922.PubMedCrossRefGoogle Scholar
  71. Lanius, R. A., Williamson, P. C., Densmore, M., Boksman, K., Neufeld, R., Gati, J. S., & Menon, R. S. (2004). The nature of traumatic memories: A 4-T FMRI functional connectivity analysis. American Journal of Psychiatry, 161(1), 36–44.PubMedCrossRefGoogle Scholar
  72. Lee, H.-J., Macbeth, A. H., Pagani, J. H., & Young, W. S. (2009). Oxytocin: The great facilitator of life. Progress in Neurobiology, 88(2), 127–151.PubMedPubMedCentralGoogle Scholar
  73. Lindauer, R. J., Vlieger, E.-J., Jalink, M., Olff, M., Carlier, I. V., Majoie, C. B., & Gersons, B. P. (2004). Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. Biological Psychiatry, 56(5), 356–363.PubMedCrossRefGoogle Scholar
  74. Liu, Y., & Wang, Z. (2003). Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience, 121(3), 537–544.PubMedCrossRefGoogle Scholar
  75. MacQueen, G. M. (2009). Magnetic resonance imaging and prediction of outcome in patients with major depressive disorder. Journal of Psychiatry & Neuroscience, 34(5), 343–349.Google Scholar
  76. Magid, M., Reichenberg, J. S., Poth, P. E., Robertson, H. T., LaViolette, A. K., Krüger, T. H. C., & Wollmer, M. A. (2014). Treatment of major depressive disorder using botulinum toxin A: A 24-week randomized, double-blind, placebo-controlled study. The Journal of Clinical Psychiatry, 75(8), 837–844.PubMedCrossRefGoogle Scholar
  77. Margraf, J., & Schneider, S. (2008). Verhaltenstherapie 1: Grundlagen und Verfahren. Berlin: Springer.Google Scholar
  78. Masters, W. H., & Johnson, V. E.. (1966). Human sexual response. Boston: Little, Brown.Google Scholar
  79. Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Review Neuroscience, 12(9), 524–538.CrossRefGoogle Scholar
  80. Miller, S. D., & Hubble, M. A. D., B. L. 2007 Supershrinks Psychotherapy Networker, 31 27–35Google Scholar
  81. Missirlian, T. M., Toukmanian, S. G., Warwar, S. H., & Greenberg, L. S. (2005). Emotional arousal, client perceptual processing, and the working alliance in experiential psychotherapy for depression. Journal of Consulting and Clinical Psychology, 73(5), 861–871.PubMedCrossRefGoogle Scholar
  82. Mohnke, S., Müller, S., Amelung, T., Krüger, T. H. C., Ponseti, J., Schiffer, B., & Walter, H. (2014). Brain alterations in paedophilia: A critical review. Progress in Neurobiology, 122, 1–23.PubMedCrossRefGoogle Scholar
  83. Monfils, M.-H., Cowansage, K. K., Klann, E., & LeDoux, J. E. (2009). Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science, 324(5929), 951–955.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Moulier, V., Fonteille, V., Pélégrini-Issac, M., Cordier, B., Baron-Laforêt, S., Boriasse, E., & Stoléru, S. (2012). A pilot study of the effects of gonadotropin-releasing hormone agonist therapy on brain activation pattern in a man with pedophilia. International Journal of Offender Therapy and Comparative Criminology, 56(1), 50–60.PubMedCrossRefGoogle Scholar
  85. Mouras, H., Stoléru, S., Bittoun, J., Glutron, D., Pélégrini-Issac, M., Paradis, A.-L., & Burnod, Y. (2003). Brain processing of visual sexual stimuli in healthy men: A functional magnetic resonance imaging study. NeuroImage, 20(2), 855–869.PubMedCrossRefGoogle Scholar
  86. Nader, K., Schafe, G. E., & Le Doux, J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406(6797), 722–726.PubMedCrossRefGoogle Scholar
  87. Nechvatal, J. M., & Lyons, D. M. (2013). Coping changes the brain. Frontiers in Behavioral Neuroscience, 7, 13.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Norman, D.A. (1986). Reflections on cognition and parallel distributed processing.In: Parallel distributed processing: explorations in the microstructure of cognition, vol. 2 Pages 531–546 MIT Press Cambridge, MA, USAGoogle Scholar
  89. Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. (2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14(8), 1215–1229.PubMedCrossRefGoogle Scholar
  90. Ochsner, K. N., Zaki, J., Hanelin, J., Ludlow, D. H., Knierim, K., Ramachandran, T., & Mackey, S. C. (2008). Your pain or mine? Common and distinct neural systems supporting the perception of pain in self and other. Social Cognitive and Affective Neuroscience, 3(2), 144–160.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Paul, T., Schiffer, B., Zwarg, T., Krüger, T. H. C., Karama, S., Schedlowski, M., & Gizewski, E. R. (2008). Brain response to visual sexual stimuli in heterosexual and homosexual males. Human Brain Mapping, 29(6), 726–735.PubMedCrossRefGoogle Scholar
  92. Petrulis, A., & Eichenbaum, H. (2003). The perirhinal–entorhinal cortex, but not the hippocampus, is critical for expression of individual recognition in the context of the Coolidge effect. Neuroscience, 122(3), 599–607.PubMedCrossRefGoogle Scholar
  93. Pfaus, J. G. (2009). Pathways of sexual desire. The Journal of Sexual Medicine, 6(6), 1506–1533.PubMedCrossRefGoogle Scholar
  94. Phillips, M. L., Chase, H. W., Sheline, Y. I., Etkin, A., Almeida, J. R., Deckersbach, T., & Trivedi, M. H. (2015). Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: Neuroimaging approaches. American Journal of Psychiatry, 172(2), 124–138.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Poeppl, T. B., Langguth, B., Laird, A. R., & Eickhoff, S. B. (2014). The functional neuroanatomy of male psychosexual and physiosexual arousal: A quantitative meta‐analysis. Human Brain Mapping, 35(4), 1404–1421.PubMedCrossRefGoogle Scholar
  96. Pos, A. E., Greenberg, L. S., Goldman, R. N., & Korman, L. M. (2003). Emotional processing during experiential treatment of depression. Journal of Consulting and Clinical Psychology, 71(6), 1007–1016.PubMedCrossRefGoogle Scholar
  97. Redouté, J., Stoléru, S., Grégoire, M. C., Costes, N., Cinotti, L., Lavenne, F., & Pujol, J. F. (2000). Brain processing of visual sexual stimuli in human males. Human Brain Mapping, 11(3), 162–177.PubMedCrossRefGoogle Scholar
  98. Ressler, K. J., Rothbaum, B. O., Tannenbaum, L., Anderson, P., Graap, K., Zimand, E., & Davis, M. (2004). Cognitive enhancers as adjuncts to psychotherapy: Use of D-cycloserine in phobic individuals to facilitate extinction of fear. Archives of General Psychiatry, 61(11), 1136–1144.PubMedCrossRefGoogle Scholar
  99. Roberts, S. C., Klapilová, K., Little, A. C., Burriss, R. P., Jones, B. C., DeBruine, L. M., & Havlíček, J.. (2012). Relationship satisfaction and outcome in women who meet their partner while using oral contraception. Proceedings of the Royal Society of London B: Biological Sciences, 279(1732):1430-1436.Google Scholar
  100. Roffman, J. L., Marci, C. D., Glick, D. M., Dougherty, D. D., & Rauch, S. L. (2005). Neuroimaging and the functional neuroanatomy of psychotherapy. Psychological Medicine, 35(10), 1385–1398.PubMedCrossRefGoogle Scholar
  101. Rupp, H. A., & Wallen, K. (2008). Sex differences in response to visual sexual stimuli: A review. Archives of Sexual Behavior, 37(2), 206–218.PubMedCrossRefGoogle Scholar
  102. Russell, V. M., McNulty, J. K., Baker, L. R., & Meltzer, A. L. (2014). The association between discontinuing hormonal contraceptives and wives’ marital satisfaction depends on husbands’ facial attractiveness. Proceedings of the National Academy of Sciences, 111(48), 17081–17086.CrossRefGoogle Scholar
  103. Scheele, D., Wille, A., Kendrick, K. M., Stoffel-Wagner, B., Becker, B., Güntürkün, O., & Hurlemann, R. (2013). Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proceedings of the National Academy of Sciences, 110(50), 20308–20313.CrossRefGoogle Scholar
  104. Schiepek, G.. (Hrsg.) (2011). Neurobiologie der Psychotherapie (2. Aufl.). Stuttgart: Schattauer.Google Scholar
  105. Schiepek, G., Heinzel, S., & Karch, S. (2011). Die neurowissenschaftliche Erforschung der Psychotherapie. Neurobiologie der Psychotherapie, 2, 1–34.Google Scholar
  106. Schiffer, B., Gizewski, E., & Krüger, T. H. C. (2009). Reduced Neuronal Responsiveness to Visual Sexual Stimuli in a Pedophile Treated with a Long-Acting LH-RH Agonist. The Journal of Sexual Medicine, 6(3), 892–894.PubMedCrossRefGoogle Scholar
  107. Schmahl, C., & Bohus, M. (2013). Bedeutung der Neurobiologie für die modulare Psychotherapie. Der Nervenarzt, 84(11), 1316–1320.PubMedCrossRefGoogle Scholar
  108. Schnell, K., & Herpertz, S. C. (2007). Effects of dialectic-behavioral-therapy on the neural correlates of affective hyperarousal in borderline personality disorder. Journal of Psychiatric Research, 41(10), 837–847.PubMedCrossRefGoogle Scholar
  109. Schutter, D. J., & Van Honk, J. (2005). The cerebellum on the rise in human emotion. The Cerebellum, 4(4), 290–294.PubMedCrossRefGoogle Scholar
  110. Serretti, A., & Chiesa, A. (2009). Treatment-emergent sexual dysfunction related to antidepressants: A meta-analysis. Journal of Clinical Psychopharmacology, 29(3), 259–266.PubMedCrossRefGoogle Scholar
  111. Shin, L. M., Shin, P. S., Heckers, S., Krangel, T. S., Macklin, M. L., Orr, S. P., & Richert, K. (2004). Hippocampal function in posttraumatic stress disorder. Hippocampus, 14(3), 292–300.PubMedCrossRefGoogle Scholar
  112. Stoléru, S., Redouté, J., Costes, N., Lavenne, F., Le Bars, D., Dechaud, H., & Pujol, J.-F. (2003). Brain processing of visual sexual stimuli in men with hypoactive sexual desire disorder. Psychiatry Research: Neuroimaging, 124(2), 67–86.PubMedCrossRefGoogle Scholar
  113. Stoléru, S., Fonteille, V., Cornélis, C., Joyal, C., & Moulier, V. (2012). Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: A review and meta-analysis. Neuroscience & Biobehavioral Reviews, 36(6), 1481–1509.CrossRefGoogle Scholar
  114. Ufearo, C., & Orisakwe, O. (1995). Restoration of normal sperm characteristics in hypoprolactinemic infertile men treated with metoclopramide and exogenous human prolactin. Clinical Pharmacology and Therapeutics, 58(3), 354–359.PubMedCrossRefGoogle Scholar
  115. Van Anders, S. M., Goodson, J. L., & Kingsbury, M. A. (2013). Beyond „Oxytocin= Good“: Neural complexities and the flipside of social bonds. Archives of Sexual Behavior, 42(7), 1115–1118.PubMedCrossRefGoogle Scholar
  116. Walter, M., Bermpohl, F., Mouras, H., Schiltz, K., Tempelmann, C., Rotte, M., & Northoff, G. (2008). Distinguishing specific sexual and general emotional effects in fMRI—Subcortical and cortical arousal during erotic picture viewing. NeuroImage, 40(4), 1482–1494.PubMedCrossRefGoogle Scholar
  117. Walter, M., Stadler, J., Tempelmann, C., Speck, O., & Northoff, G. (2008). High resolution fMRI of subcortical regions during visual erotic stimulation at 7 T. Magnetic Resonance Materials in Physics, Biology and Medicine, 21(1–2), 103–111.CrossRefGoogle Scholar
  118. Warwar, S., & Greenberg, L. S. (2000). Catharsis is not enough: Changes in emotional processing related to psychotherapy outcome. Indian Hills: Paper Presented at the Annual Meeting of the International Society for Psychotherapy Research..Google Scholar
  119. Weingarten, C. P., & Strauman, T. J. (2015). Neuroimaging for psychotherapy research: Current trends. Psychotherapy Research, 25(2), 185–213.PubMedCrossRefGoogle Scholar
  120. Wollmer, M. A., De Boer, C., Kalak, N., Beck, J., Götz, T., Schmidt, T., & Kollewe, K. (2012). Facing depression with botulinum toxin: A randomized controlled trial. Journal of Psychiatric Research, 46(5), 574–581.PubMedCrossRefGoogle Scholar
  121. Woodard, T. L., Nowak, N. T., Balon, R., Tancer, M., & Diamond, M. P. (2013). Brain activation patterns in women with acquired hypoactive sexual desire disorder and women with normal sexual function: A cross-sectional pilot study. Fertility and Sterility, 100(4), 1068–1076.PubMedCrossRefGoogle Scholar
  122. Young, J. E., Klosko, J. S., & Weishaar, M. E. (2005). Schematherapie: Ein praxisorientiertes Handbuch. Paderborn: Junfermann.Google Scholar
  123. Young, K. A., Gobrogge, K. L., Liu, Y., & Wang, Z. (2011). The neurobiology of pair bonding: Insights from a socially monogamous rodent. Frontiers in Neuroendocrinology, 32(1), 53–69.PubMedCrossRefGoogle Scholar
  124. Young, L. J., & Wang, Z. (2004). The neurobiology of pair bonding. Nature Neuroscience, 7(10), 1048–1054.PubMedCrossRefGoogle Scholar
  125. Young, IIII, W. S., Shepard, E., Amico, J., Hennighausen, L., Wagner, K. U., LaMarca, M. E., & Ginns, E. I. (1996). Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition. Journal of Neuroendocrinology, 8(11), 847–853PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Geschäftsführender Oberarzt und stellvertretender Leiter des Arbeitsbereichs Klinische Psychologie und SexualmedizinKlinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie; Medizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations