Advertisement

Adaptable Behavior Coding Schema for Avatar Interaction in Network Virtual Environment

  • Yuyong He
  • Zhigeng PanEmail author
  • Haiying Zhao
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10092)

Abstract

With the advanced development of the information technologies, more and more virtual environment applications and systems are based on network. Avatars are human being’s representatives in virtual world to demonstrate human being behaviors in the real world. It is necessary to have a coding standard for the avatar’s behaviors in order to interact more efficient and more understandable. In this paper, we propose an adaptable behavior coding schema for avatars’ interaction in the distributed virtual environment. The Huffman coding technique is adapted to minimize the average length of behavior codes based on a survey and its analysis. Meanwhile, a transmission coding schema is proposed. Demonstrations are built to approve our schema.

Keywords

Avatar behavior Coding schema Avatar interaction Distributed virtual environment  

Notes

Acknowledgment

All VRMM team members help to finish the human being behavior survey mentioned in this paper. I really appreciate the effort they made. The research is sponsored by National Science and Technology Support program: Research and demonstration of virtual exhibition system for the spread of the special culture. (Project No. 2015BAK04B05). It is also sponsored by Key projects of National Natural Science Foundation of China: Research and application of new interactive computing theory, method and key technology based on the sense of body. (Project No. 61332017).

References

  1. 1.
    Brooks Jr., F.P.: What’s real about virtual reality. IEEE Comput. Graph. Appl. 19(6), 16 (1996)CrossRefGoogle Scholar
  2. 2.
    Pan, Z., Zhu, J., Zhang, M., Hu, W.: Collaborative virtual learning environment using synthetic characters. In: Lau, R.W.H., Li, Q., Cheung, R., Liu, W. (eds.) ICWL 2005. LNCS, vol. 3583, pp. 364–374. Springer, Heidelberg (2005). doi: 10.1007/11528043_38 CrossRefGoogle Scholar
  3. 3.
    Wang, R.G., Dong, H.L., Wu, M.W., Wu, Q.F.: Research and design of digital museum based on virtual reality. In: Advanced Materials Research, vol. 926, pp. 2516–2520. Trans Tech Publications (2014)Google Scholar
  4. 4.
    Bowen, J.P., Filippini-Fantoni, S.: Personalization and the web from a museum perspective. In: Bearman, D., Trant, J. (eds.) Proceedings of the Conference Museums and the Web 2004, Arlington, Virginia, USA, pp. 63–78. Eurographics Association, April 2004Google Scholar
  5. 5.
    Pan, Z., Chen, W., Zhang, M., Liu, J., Wu, G.: Virtual reality in the digital olympic museum. IEEE Comput. Graph. Appl. 29(5), 91–95 (2009)CrossRefGoogle Scholar
  6. 6.
    Wexelblat, A.: Virtual Reality: Applications and Explorations. Academic Press, New York (2014)Google Scholar
  7. 7.
    Gaye, K., Patrick, F., Tom, B.: Managing global virtual teams: an exploration of operation and performance. In: PACIS, p. 5 (2014)Google Scholar
  8. 8.
    Blair, J., Srinath, K.P.: A note on sample size for behavior coding pretests. Field Methods 20(1), 85–99 (2008)CrossRefGoogle Scholar
  9. 9.
    Pan, Z., Shi, J., Zhang, M.: Distributed graphics support for virtual environments. Comput. Graph. 20(2), 191–197 (1996)CrossRefGoogle Scholar
  10. 10.
    Liu, J., Pan, Z., Li, X.: An accelerometer-based gesture recognition algorithm and its application for 3D interaction. Comput. Sci. Inf. Syst. 7(1), 177–188 (2010)CrossRefGoogle Scholar
  11. 11.
    Li, L., Liu, G., Zhang, M., Pan, Z., Song, E.: BAAP: a behavioral animation authoring platform for emotion driven 3D virtual characters. In: Yang, H.S., Malaka, R., Hoshino, J., Han, J.H. (eds.) ICEC 2010. LNCS, vol. 6243, pp. 350–357. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15399-0_37 CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Earnshaw, R.A.: Virtual Reality Systems. Academic Press, New York (2014)Google Scholar
  14. 14.
    Ozer, P.: Actual avatar behavior tracking in second life. Master Thesis, January 2008Google Scholar
  15. 15.
    Huang, P.-C., Zhang, Y., Lai, D.: Behavior analysis system based on human static posture states. Int. J. Adv. Inf. Technol. (IJAIT) 3(12), 76–90 (2009)Google Scholar
  16. 16.
    Huffman, D.A.: A method for the construction of minimum-redundancy codes. In: Proceedings of the I.R.E., pp. 1098–1102, September 1952Google Scholar
  17. 17.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. In: 2nd edn. Section 16.3, pp. 385–392. MIT Press and McGraw-Hill (2001). ISBN 0-262-03293-7Google Scholar
  18. 18.
    Golin, M.J., Kenyon, C., Young, N.E.: Human coding with unequal letter costs. In: STOC, pp. 785–791 (2002)Google Scholar
  19. 19.
    Edward, L., Lourdeaux, D., Lenne, D., Barthes, J., Burkhardt, J.: Modelling autonomous virtual agent behaviours in a virtual environment for risk. Int. J. Virtual Reality 7(3), 13–22 (2008)Google Scholar
  20. 20.
    Hlsken, F., Eckes, C., Kuck, R., Unterberg, J., Jrg, S.: Modeling and animating virtual humans for real-time applications. Int. J. Virtual Reality 6(4), 11–20 (2007)Google Scholar
  21. 21.
    Lin, H., Wang, H.: Avatar creation in virtual worlds: behaviors and motivations. Comput. Hum. Behav. 34, 213–218 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Lab of CAD & CGZhejiang UniversityHangzhouChina
  2. 2.Alibaba Business SchoolHangzhou Normal UniversityHangzhouChina
  3. 3.Guangdong Academy of Research on VR IndustryFoshan UniversityFoshanChina
  4. 4.Beijing Key Lab of Mobile Media and Culture Computing, Century CollegeBUPTBeijingChina

Personalised recommendations