Advertisement

Research on Interactive Dynamic Simulation Method in Virtual Medical Surgical Visualization

  • Yanjun PengEmail author
  • Yingran Ma
  • Yuxiang Zhu
  • Yuanhong Wang
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10092)

Abstract

Interactive dynamic simulation method is proposed to solve computational models of soft tissue undergoing large deformation, collision detection, volume conservation in medical surgical simulation visualization. During the process of implementation of the interactive dynamic simulation method, the point based method is used to simulate the elastic solids undergoing large deformations and the position based method is used to simulate the objects collision, friction and volume conservation. It improves the efficiency and stability of the response of heterogeneous soft tissue undergoing contact or even the multi-organs interactions, and can be extended to interactive biopsy and cutting simulation.

Keywords

Interactive dynamic simulation Virtual surgical Medical visualization Soft tissue deformation 

Notes

Acknowledgements

This work is supported by the Shandong Province Science Foundation of China under Grant No. ZR2015FM013, the National Natural Science Foundation of China under Grant No. 61502279, the National Key Research and Development Program of China under Grant No. 2016YFC0801406, the Shandong Province Key Research and Development Program of China under Grant No. 2016GSF120012, the Special Funds of Taishan Scholars Construction Project, Leading Talent Project of Shandong University of Science and Technology.

References

  1. 1.
    Basdogan, C., Sedef, M., Harders, M., et al.: VR-based simulators for training in minimally invasive surgery. IEEE Comput. Graph. Appl. 27(2), 54–66 (2007)CrossRefGoogle Scholar
  2. 2.
    Peterlík, I., Duriez, C., Cotin, S.: Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin Heidelberg (2012)Google Scholar
  3. 3.
    Meier, U., López, O., Monserrat, C., et al.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Programs Biomed. 77(3), 183–197 (2005)CrossRefGoogle Scholar
  4. 4.
    Nealen, A., Müller, M., Keiser, R., et al.: Physically based deformable models in computer graphics. Comput. Graph. Forum 25, 809–836 (2006). Blackwell Publishing Ltd.CrossRefGoogle Scholar
  5. 5.
    Debunne, G., Desbrun, M., Cani, M.P., et al.: Dynamic real-time deformations using space & time adaptive sampling. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–36. ACM (2001)Google Scholar
  6. 6.
    Terzopoulos, D., Platt, J., Barr, A., et al.: Elastically deformable models. In: ACM Siggraph Computer Graphics, pp. 205–214. ACM (1987)Google Scholar
  7. 7.
    Teschner, M., Heidelberger, B., Muller, M., et al.: A versatile and robust model for geometrically complex deformable solids. In: Proceedings of the Computer Graphics International, 312–319. IEEE (2004)Google Scholar
  8. 8.
    Jones, B., Ward, S., Jallepalli, A., et al.: Deformation embedding for point-based elastical simulation. ACM Trans. Graph. (TOG) 33(2), 21–32 (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gerszewski, D., Bhattacharya, H., Bargteil, A.W.: A point-based method for animating elastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 133–138. ACM (2009)Google Scholar
  10. 10.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1715 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Müller, M., Heidelberger, B., Hennix, M., et al.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)CrossRefGoogle Scholar
  12. 12.
    Kubiak, B., Pietroni, N., Ganovelli, F., et al.: A robust method for real-time thread simulation. In: Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology, pp. 85–88. ACM (2007)Google Scholar
  13. 13.
    Kelager, M., Niebe, S., Erleben, K.: A triangle bending constraint model for position-based dynamics. VRIPHYS, pp. 31–37 (2010)Google Scholar
  14. 14.
    Diziol, R., Bender, J., Bayer, D.: Robust real-time deformation of incompressible surface meshes. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–246. ACM (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yanjun Peng
    • 1
    Email author
  • Yingran Ma
    • 1
  • Yuxiang Zhu
    • 1
  • Yuanhong Wang
    • 1
  1. 1.College of Computer Science and EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations