Advertisement

Tight Upper and Lower Bounds for Leakage-Resilient, Locally Decodable and Updatable Non-malleable Codes

  • Dana Dachman-Soled
  • Mukul Kulkarni
  • Aria ShahverdiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10174)

Abstract

In a recent result, Dachman-Soled et al. (TCC 2015) proposed a new notion called locally decodable and updatable non-malleable codes, which informally, provides the security guarantees of a non-malleable code while also allowing for efficient random access. They also considered locally decodable and updatable non-malleable codes that are leakage-resilient, allowing for adversaries who continually leak information in addition to tampering. Unfortunately, the locality of their construction in the continual setting was \(\varOmega (\log n)\), meaning that if the original message size was n blocks, then \(\varOmega (\log n)\) blocks of the codeword had to be accessed upon each decode and update instruction.

In this work, we ask whether super-constant locality is inherent in this setting. We answer the question affirmatively by showing tight upper and lower bounds. Specifically, in any threat model which allows for a rewind attack—wherein the attacker leaks a small amount of data, waits for the data to be overwritten and then writes the original data back—we show that a locally decodable and updatable non-malleable code with block size \(\mathcal X \in \mathrm {poly} (\lambda )\) number of bits requires locality \(\delta (n) \in \omega (1)\), where \(n = \mathrm {poly} (\lambda )\) is message length and \(\lambda \) is security parameter. On the other hand, we re-visit the threat model of Dachman-Soled et al. (TCC 2015)—which indeed allows the adversary to launch a rewind attack—and present a construction of a locally decodable and updatable non-malleable code with block size \(\mathcal X \in \varOmega (\lambda ^{1/\mu })\) number of bits (for constant \(0< \mu < 1\)) with locality \(\delta (n)\), for any \(\delta (n) \in \omega (1)\), and \(n = \mathrm {poly} (\lambda )\).

Keywords

Encode Scheme Leak Information Compression Function Threat Model Original Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_15 CrossRefGoogle Scholar
  2. 2.
    Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 459–468. ACM Press, June 2015Google Scholar
  3. 3.
    Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 774–783. ACM Press, May/June 2014Google Scholar
  4. 4.
    Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 398–426. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46494-6_17 Google Scholar
  5. 5.
    Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes against bit-wise tampering and permutations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_26 CrossRefGoogle Scholar
  6. 6.
    Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-optimizing compiler for non-malleable codes against bit-wise tampering and permutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 375–397. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46494-6_16 Google Scholar
  7. 7.
    Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49896-5_31 CrossRefGoogle Scholar
  8. 8.
    Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-malleable codes. Cryptology ePrint Archive, Report 2015/129 (2015). http://eprint.iacr.org/2015/129
  9. 9.
    Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decodable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 489–514. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_21 CrossRefGoogle Scholar
  10. 10.
    Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_14 CrossRefGoogle Scholar
  11. 11.
    Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state tampering. In: 55th FOCS, pp. 306–315. IEEE Computer Society Press, October 2014Google Scholar
  12. 12.
    Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient functions. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 670–683. ACM Press, June 2016Google Scholar
  13. 13.
    Chee, Y.M., Feng, T., Ling, S., Wang, H., Zhang, L.F.: Query-efficient locally decodable codes of subexponential length. Comput. Complex. 22(1), 159–189 (2013). http://dx.doi.org/10.1007/s00037-011-0017-1
  14. 14.
    Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M. (ed.) ITCS 2014, pp. 155–168. ACM, January 2014Google Scholar
  15. 15.
    Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_19 CrossRefGoogle Scholar
  16. 16.
    Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: simpler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 306–335. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_13 CrossRefGoogle Scholar
  17. 17.
    Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46494-6_22 Google Scholar
  18. 18.
    Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updatable non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46494-6_18 Google Scholar
  19. 19.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Drucker, A.: New limits to classical and quantum instance compression. SIAM J. Comput. 44(5), 1443–1479 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_14 CrossRefGoogle Scholar
  22. 22.
    Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C. (ed.) ICS 2010, pp. 434–452. Tsinghua University Press, January 2010Google Scholar
  23. 23.
    Efremenko, K.: 3-query locally decodable codes of subexponential length. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 39–44. ACM Press, May/June 2009Google Scholar
  24. 24.
    Erdős, P., Rado, R.: Intersection theorems for systems of sets. J. Lond. Math. Soc. 35(1), 85–90 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_20 CrossRefGoogle Scholar
  26. 26.
    Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–603. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46447-2_26 Google Scholar
  27. 27.
    Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_7 CrossRefGoogle Scholar
  28. 28.
    Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic Tamper-Proof (ATP) security: theoretical foundations for security against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24638-1_15 CrossRefGoogle Scholar
  29. 29.
    Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 1128–1141. ACM Press, June 2016Google Scholar
  30. 30.
    Guo, A., Kopparty, S., Sudan, M.: New affine-invariant codes from lifting. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 529–540. ACM, January 2013Google Scholar
  31. 31.
    Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander codes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 540–551. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39206-1_46 Google Scholar
  32. 32.
    Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keeping secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). doi: 10.1007/11761679_19 CrossRefGoogle Scholar
  33. 33.
    Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46494-6_19 Google Scholar
  34. 34.
    Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22792-9_21 CrossRefGoogle Scholar
  35. 35.
    Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: 32nd ACM STOC, pp. 80–86. ACM Press, May 2000Google Scholar
  36. 36.
    Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 167–176. ACM Press, June 2011Google Scholar
  37. 37.
    Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_30 CrossRefGoogle Scholar
  38. 38.
    Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. J. ACM 55(1), 1:1–1:16. http://doi.acm.org/10.1145/1326554.1326555
  39. 39.
    Yekhanin, S.: Locally decodable codes: a brief survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 273–282. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20901-7_18 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Dana Dachman-Soled
    • 1
  • Mukul Kulkarni
    • 1
  • Aria Shahverdi
    • 1
    Email author
  1. 1.University of MarylandCollege ParkUSA

Personalised recommendations