Stamping Techniques for Micro- and Nanofabrication

  • John A. Rogers
  • Etienne Menard
Part of the Springer Handbooks book series (SHB)


Soft-lithographic techniques that use rubber stamps and molds provide simple means to generate patterns with lateral dimensions that can be much smaller than 1 μm and can even extend into the single nanometer regime. These methods rely on the use of soft elastomeric elements typically made out of the polymer poly(dimethylsiloxane). The first section of this chapter presents the fabrication techniques for these elements together with data and experiments that provide insights into the fundamental resolution limits. Next, several representative soft-lithography techniques based on the use of these elements are presented:
  1. 1.

    Microcontact printing, which uses molecular inks that form self-assembled monolayers.

  2. 2.

    Near- and proximity-field photolithography for producing two- and three-dimensional structures with subwavelength resolution features.

  3. 3.

    Nanotransfer printing, where soft or hard stamps print single or multiple layers of solid inks with feature sizes down to 100 nm.


The chapter concludes with descriptions of some device-level applications that highlight the patterning capabilities and potential commercial uses of these techniques.



The authors extend their deepest thanks to all of the collaborators who contributed the work described here.


  1. 6.1
    C.A. Mirkin, J.A. Rogers: Emerging methods for micro- and nanofabrication, MRS Bulletin 26, 506–507 (2001)CrossRefGoogle Scholar
  2. 6.2
    H.I. Smith, H.G. Craighead: Nanofabrication, Phys. Today 43, 24–43 (1990)CrossRefGoogle Scholar
  3. 6.3
    W.M. Moreau (Ed.): Semiconductor Lithography: Principles and Materials (Plenum, New York 1988)Google Scholar
  4. 6.4
    S. Matsui, Y. Ochiai: Focused ion beam applications to solid state devices, Nanotechnology 7, 247–258 (1996)CrossRefGoogle Scholar
  5. 6.5
    J.M. Gibson: Reading and writing with electron beams, Phys. Today 50, 56–61 (1997)CrossRefGoogle Scholar
  6. 6.6
    L.L. Sohn, R.L. Willett: Fabrication of nanostructures using atomic-force microscope-based lithography, Appl. Phys. Lett. 67, 1552–1554 (1995)CrossRefGoogle Scholar
  7. 6.7
    E. Betzig, K. Trautman: Near-field optics – Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257, 189–195 (1992)CrossRefGoogle Scholar
  8. 6.8
    A.J. Bard, G. Denault, C. Lee, D. Mandler, D.O. Wipf: Scanning electrochemical microscopy: A new technique for the characterization and modification of surfaces, Acc. Chem. Res. 23, 357 (1990)CrossRefGoogle Scholar
  9. 6.9
    J.A. Stroscio, D.M. Eigler: Atomic and molecular manipulation with the scanning tunneling microscope, Science 254, 1319–1326 (1991)CrossRefGoogle Scholar
  10. 6.10
    J. Nole: Holographic lithography needs no mask, Laser Focus World 33, 209–212 (1997)Google Scholar
  11. 6.11
    A.N. Broers, A.C.F. Hoole, J.M. Ryan: Electron beam lithography – Resolution limits, Microelectron. Eng. 32, 131–142 (1996)CrossRefGoogle Scholar
  12. 6.12
    A.N. Broers, W. Molzen, J. Cuomo, N. Wittels: Electron-beam fabrication of 80 Å metal structures, Appl. Phys. Lett. 29, 596 (1976)CrossRefGoogle Scholar
  13. 6.13
    G.D. Aumiller, E.A. Chandross, W.J. Tomlinson, H.P. Weber: Submicrometer resolution replication of relief patterns for integrated optics, J. Appl. Phys. 45, 4557–4562 (1974)CrossRefGoogle Scholar
  14. 6.14
    Y. Xia, J.J. McClelland, R. Gupta, D. Qin, X.-M. Zhao, L.L. Sohn, R.J. Celotta, G.M. Whiteside: Replica molding using polymeric materials: A practical step toward nanomanufacturing, Adv. Mater. 9, 147–149 (1997)CrossRefGoogle Scholar
  15. 6.15
    T. Borzenko, M. Tormen, G. Schmidt, L.W. Molenkamp, H. Janssen: Polymer bonding process for nanolithography, Appl. Phys. Lett. 79, 2246–2248 (2001)CrossRefGoogle Scholar
  16. 6.16
    H. Hua, Y. Sun, A. Gaur, M.A. Meitl, L. Bilhaut, L. Rotinka, J. Wang, P. Geil, M. Shim, J.A. Rogers: Polymer imprint lithography with molecular-scale resolution, Nano Lett. 4(12), 2467–2471 (2004)CrossRefGoogle Scholar
  17. 6.17
    A. Kumar, G.M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63, 2002–2004 (1993)CrossRefGoogle Scholar
  18. 6.18
    Y. Xia, G.M. Whitesides: Soft lithography, Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRefGoogle Scholar
  19. 6.19
    Y. Xia, J.A. Rogers, K.E. Paul, G.M. Whitesides: Unconventional methods for fabricating and patterning nanostructures, Chem. Rev. 99, 1823–1848 (1999)CrossRefGoogle Scholar
  20. 6.20
    J.A. Rogers, R.J. Jackman, J.L. Wagener, A.M. Vengsarkar, G.M. Whitesides: Using microcontact printing to generate photomasks on the surface of optical fibers: A new method for producing in-fiber gratings, Appl. Phys. Lett. 70, 7–9 (1997)CrossRefGoogle Scholar
  21. 6.21
    B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, H. Wolf: Printing meets lithography: soft approaches to high-resolution printing, IBM J. Res. Dev. 45, 697–719 (2001)CrossRefGoogle Scholar
  22. 6.22
    J.A. Rogers: Rubber stamping for plastic electronics and fiber optics, MRS Bulletin 26, 530–534 (2001)CrossRefGoogle Scholar
  23. 6.23
    N.B. Larsen, H. Biebuyck, E. Delamarche, B. Michel: Order in microcontact printed self-assembled monolayers, J. Am. Chem. Soc. 119, 3017–3026 (1997)CrossRefGoogle Scholar
  24. 6.24
    H.A. Biebuyck, G.M. Whitesides: Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold, Langmuir 10, 2790–2793 (1994)CrossRefGoogle Scholar
  25. 6.25
    J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic: Paper-like electronic displays: Large area, rubber stamped plastic sheets of electronics and electrophoretic inks, Proc. Natl. Acad. Sci. USA 98, 4835–4840 (2001)CrossRefGoogle Scholar
  26. 6.26
    J.L. Wilbur, H.A. Biebuyck, J.C. MacDonald, G.M. Whitesides: Scanning force microscopies can image patterned self-assembled monolayers, Langmuir 11, 825–831 (1995)CrossRefGoogle Scholar
  27. 6.27
    J.C. Love, D.B. Wolfe, M.L. Chabinyc, K.E. Paul, G.M. Whitesides: Self-assembled monolayers of alkanethiolates on palladium are good etch resists, J. Am. Chem. Soc. 124, 1576–1577 (2002)CrossRefGoogle Scholar
  28. 6.28
    H. Schmid, B. Michel: Siloxane polymers for high-resolution, high-accuracy soft lithography, Macromolecules 33, 3042–3049 (2000)CrossRefGoogle Scholar
  29. 6.29
    K. Choi, J.A. Rogers: A photocurable poly(dimethylsiloxane) chemistry for soft lithography in the nanometer regime, J. Am. Chem. Soc. 125, 4060–4061 (2003)CrossRefGoogle Scholar
  30. 6.30
    J.A. Rogers, K.E. Paul, G.M. Whitesides: Quantifying distortions in soft lithography, J. Vac. Sci. Technol. B 16, 88–97 (1998)CrossRefGoogle Scholar
  31. 6.31
    J. Tate, J.A. Rogers, C.D.W. Jones, W. Li, Z. Bao, D.W. Murphy, R.E. Slusher, A. Dodabalapur, H.E. Katz, A.J. Lovinger: Anodization and microcontact printing on electroless silver: Solution-based fabrication procedures for low voltage organic electronic systems, Langmuir 16, 6054–6060 (2000)CrossRefGoogle Scholar
  32. 6.32
    Y. Xia, E. Kim, G.M. Whitesides: Microcontact printing of alkanethiols on silver and its application to microfabrication, J. Electrochem. Soc. 143, 1070–1079 (1996)CrossRefGoogle Scholar
  33. 6.33
    Y.N. Xia, X.M. Zhao, E. Kim, G.M. Whitesides: A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold, Chem. Mater. 7, 2332–2337 (1995)CrossRefGoogle Scholar
  34. 6.34
    R.J. Jackman, J. Wilbur, G.M. Whitesides: Fabrication of submicrometer features on curved substrates by microcontact printing, Science 269, 664–666 (1995)CrossRefGoogle Scholar
  35. 6.35
    R.J. Jackman, S.T. Brittain, A. Adams, M.G. Prentiss, G.M. Whitesides: Design and fabrication of topologically complex, three-dimensional microstructures, Science 280, 2089–2091 (1998)CrossRefGoogle Scholar
  36. 6.36
    J.A. Rogers, R.J. Jackman, G.M. Whitesides: Microcontact printing and electroplating on curved substrates: A new means for producing free-standing three-dimensional microstructures with possible applications ranging from micro-coil springs to coronary stents, Adv. Mater. 9, 475–477 (1997)CrossRefGoogle Scholar
  37. 6.37
    Y.-L. Loo, R.W. Willett, K. Baldwin, J.A. Rogers: Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: applications in plastic electronics, Appl. Phys. Lett. 81, 562–564 (2002)CrossRefGoogle Scholar
  38. 6.38
    Y.-L. Loo, R.W. Willett, K. Baldwin, J.A. Rogers: Interfacial chemistries for nanoscale transfer printing, J. Am. Chem. Soc. 124, 7654–7655 (2002)CrossRefGoogle Scholar
  39. 6.39
    Y.-L. Loo, J.W.P. Hsu, R.L. Willett, K.W. Baldwin, K.W. West, J.A. Rogers: High-resolution transfer printing on GaAs surfaces using alkane dithiol self-assembled monolayers, J. Vac. Sci. Technol. B 20, 2853–2856 (2002)CrossRefGoogle Scholar
  40. 6.40
    G.S. Ferguson, M.K. Chaudhury, G.B. Sigal, G.M. Whitesides: Contact adhesion of thin gold-films on elastomeric supports – cold welding under ambient conditions, Science 253, 776–778 (1991)CrossRefGoogle Scholar
  41. 6.41
    W. Zhang, S.Y. Chou: Multilevel nanoimprint lithography with submicron alignment over 4 in Si wafers, Appl. Phys. Lett. 79, 845–847 (2001)CrossRefGoogle Scholar
  42. 6.42
    N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393, 146–149 (1998)CrossRefGoogle Scholar
  43. 6.43
    E. Menard, L. Bilhaut, J. Zaumseil, J.A. Rogers: Improved surface chemistries, thin film deposition techniques, and stamp designs for nanotransfer printing, Langmuir 20, 6871–6878 (2004)CrossRefGoogle Scholar
  44. 6.44
    J. Zaumseil, M.A. Meitl, J.W.P. Hsu, B. Acharya, K.W. Baldwin, Y.-L. Loo, J.A. Rogers: Three-dimensional and multilayer nanostructures formed by nanotransfer printing, Nano Lett. 3, 1223–1227 (2003)CrossRefGoogle Scholar
  45. 6.45
    Z. Bao, J.A. Rogers, H.E. Katz: Printable organic and polymeric semiconducting materials and devices, J. Mater. Chem. 9, 1895–1904 (1999)CrossRefGoogle Scholar
  46. 6.46
    J.A. Rogers, Z. Bao, A. Dodabalapur, A. Makhija: Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting, printing and molding, IEEE Electron Dev. Lett. 21, 100–103 (2000)CrossRefGoogle Scholar
  47. 6.47
    J.A. Rogers, Z. Bao, A. Makhija: Non-photolithographic fabrication sequence suitable for reel-to-reel production of high performance organic transistors and circuits that incorporate them, Adv. Mater. 11, 741–745 (1999)CrossRefGoogle Scholar
  48. 6.48
    P. Mach, S. Rodriguez, R. Nortrup, P. Wiltzius, J.A. Rogers: Active matrix displays that use printed organic transistors and polymer dispersed liquid crystals on flexible substrates, Appl. Phys. Lett. 78, 3592–3594 (2001)CrossRefGoogle Scholar
  49. 6.49
    J.A. Rogers: Toward paperlike displays, Science 291, 1502–1503 (2001)CrossRefGoogle Scholar
  50. 6.50
    Y.-L. Loo, T. Someya, K.W. Baldwin, P. Ho, Z. Bao, A. Dodabalapur, H.E. Katz, J.A. Rogers: Soft, conformable electrical contacts for organic transistors: High resolution circuits by lamination, Proc. Natl. Acad. Sci. USA 99, 10252–10256 (2002)CrossRefGoogle Scholar
  51. 6.51
    C. Kim, P.E. Burrows, S.R. Forrest: Micropatterning of organic electronic devices by cold-welding, Science 288, 831–833 (2000)CrossRefGoogle Scholar
  52. 6.52
    C. Kim, M. Shtein, S.R. Forrest: Nanolithography based on patterned metal transfer and its application to organic electronic devices, Appl. Phys. Lett. 80, 4051–4053 (2002)CrossRefGoogle Scholar
  53. 6.53
    J.A. Rogers, R.J. Jackman, G.M. Whitesides, D.L. Olson, J.V. Sweedler: Using microcontact printing to fabricate microcoils on capillaries for high resolution 1H-NMR on nanoliter volumes, Appl. Phys. Lett. 70, 2464–2466 (1997)CrossRefGoogle Scholar
  54. 6.54
    J.A. Rogers, R.J. Jackman, G.M. Whitesides: Constructing single and multiple helical microcoils and characterizing their performance as components of microinductors and microelectromagnets, J. Microelectromech. Syst. 6, 184–192 (1997)CrossRefGoogle Scholar
  55. 6.55
    R.J. Jackman, J.A. Rogers, G.M. Whitesides: Fabrication and characterization of a concentric, cylindrical microtransformer, IEEE Trans. Magn. 33, 2501–2503 (1997)CrossRefGoogle Scholar
  56. 6.56
    J.A. Rogers, M. Meier, A. Dodabalapur: Using stamping and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers, Appl. Phys. Lett. 73, 1766–1768 (1998)CrossRefGoogle Scholar
  57. 6.57
    M. Berggren, A. Dodabalapur, R.E. Slusher, A. Timko, O. Nalamasu: Organic solid-state lasers with imprinted gratings on plastic substrates, Appl. Phys. Lett. 72, 410–411 (1998)CrossRefGoogle Scholar
  58. 6.58
    J.A. Rogers, M. Meier, A. Dodabalapur: Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on non-planar substrates, Appl. Phys. Lett. 74, 3257–3259 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • John A. Rogers
    • 1
  • Etienne Menard
    • 2
  1. 1.Dept. of Materials Science & EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.HeliosLiteLe Bourget du LacFrance

Personalised recommendations