High Volume Manufacturing and Field Stability of MEMS Products

  • T. Kieran Nunan
  • Mark G. da Silva
Part of the Springer Handbooks book series (SHB)


Low-volume microelectromechanical systems (MEMS )/nanoelectromechanical systems (NEMS ) production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high-volume production adds requirements on design, process control, quality, product stability, market size, market maturity, internal capacity, and capital investment or transfer to foundry and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers and gyroscopes that are in high-volume production. What is described here also applies to other MEMS products such as pressure sensors, image projection systems, microphones, etc. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard well-controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. When transferring to an external foundry, existing processes are modified to utilize the foundry equipment and processes where possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products, partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high-volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost – a result that is normally achieved only after a product is in high-volume production. During the early years, IC companies reduce cost and financial risk by using existing facilities for low-volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are significant factors in MEMS product cost. MEMS devices have extremely high surface-to-volume ratio, so performance and stability may depend on the control of surface characteristics after packaging. Looking into the future, the competitive advantage of IC suppliers is decreasing because MEMS foundries are growing and small companies are learning to integrate MEMS/NEMS devices with die from CMOS foundries in one package. Packaging challenges still remain, because most MEMS/NEMS products must interact with the environment without degrading stability or reliability.


  1. 42.1
    J. Martin: High volume manufacturing and field stability of MEMS products. In: Springer Handbook of Nanotechnology (Springer, Berlin, Heidelberg 2010)Google Scholar
  2. 42.2
    TSensors Summit – MEMS Industry Group Enterprise,
  3. 42.3
    T.A. Core, W.K. Tsang, S.J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol 36(10), 39–47 (1993)Google Scholar
  4. 42.4
    K. Nunan, G. Ready, J. Sledziewski: LPCVD & PECVD operations designed for iMEMS sensor devices, Vac. Technol. Coat. 2(1), 26–37 (2001)Google Scholar
  5. 42.5
    K.H. Chau, R.E. Suloff: Technology for the high-volume manufacturing of integrated surface-micromachined accelerometer products, Microelectron. J. 29, 579–586 (1998)CrossRefGoogle Scholar
  6. 42.6
    W. Kuenel, S. Sherman: A surface micromachined silicon accelerometer with on-chip detection circuitry, Sens. Actuators Phys. 45(1), 7–16 (1994)CrossRefGoogle Scholar
  7. 42.7
    M. Schirmer, R. Goggin, P. Fitzgerald, D. Rohan, J.-E. Wong: MEMS Switch Capping and Passivation Method. US Patent 8124436 (2012)Google Scholar
  8. 42.8
    L.E. Felton, P.W. Farrell, J. Luo, D.J. Collins, J.R. Martin, W.A. Webster: MEMS Capping Method and Apparatus. US Patent 6893574 (2005)Google Scholar
  9. 42.9
    J.R. Martin: Process for Wafer Level Treatment to Reduce Stiction and Passivate Micromachined Surfaces and Compounds Used Therefor. US Patent 6674140 (2004)Google Scholar
  10. 42.10
    A. Solanki, K. Prasad, K. Nunan, R. Oreilly: Comparing process flow of monolithic CMOS-MEMS integration on SOI wafers with monolithic BiMOS-MEMS integration on Silicon wafers, iMEMS fabrication incorporating MEMS and electronics on a single chip. In: Proc. 53rd IEEE Int. Midwest Symp. Circuits Syst. (2010) doi: 10.1109/MWSCAS.2010.5548876 Google Scholar
  11. 42.11
    S. Lewis, S. Alie, T. Brosnihan, C. Core, T. Core, R. Howe, J. Geen, D. Hollocher, M. Judy, J. Memishian, K. Nunan, R. Paine, S. Sherman, B. Tsang, B. Wachtman: Integrated sensor and electronics processing for >108 iMEMS inertial measurement unit components. In: Proc. IEEE Int. Electron Devices Meet (2003) doi: 10.1109/IEDM.2003.1269435 Google Scholar
  12. 42.12
    G.K. Fedder, J. Chae, K. Najafi, T. Denison, J. Kuang, S. Lewis: Monolithically integrated inertial sensors. In: CMOS-MEMS, ed. by O. Brand, G.K. Fedder (Wiley-VCH, Weinheim 2005)Google Scholar
  13. 42.13
    D. Hollocher, X. Zhang, A. Sparks, S. Bart, W. Sawyer, P. Narayanasamy, C. Pipitone, J. Memishian, H. Samuels, S.-L. Ng, R. Mhatre, D. Whitley, F. Sammoura, M. Bhagavat, C. Tsau, K. Nunan, M. Judy, M. Farrington, K. Yang: A very low cost, 3-axis, MEMS accelerometer for consumer applications. In: Proc. IEEE Sens (2009) pp. 953–957 doi: 10.1109/ICSENS.2009.5398189 Google Scholar
  14. 42.14
    T.K. Nunan: Polysilicon Deposition and Anneal Process Enabling Thick Polysilcon Films for MEMS Applications. US Patent 7754617 (2008)Google Scholar
  15. 42.15
    S. Sood: CMOS Compatible Hermetic Wafer Level Packaging for Inertial MEMS (SUSS MicroTech Inc, Sunnyvale 2013)Google Scholar
  16. 42.16
  17. 42.17
    MEMS Industrial Group's Foundry Engagement Guide Steering Committee:
  18. 42.18
    Yole: Yole MEMS & Sensors Industry Reports,
  19. 42.19
    SystemPlus Consulting: MEMS Accelerometer Reports, (2016)
  20. 42.20
    D.M. Anderson: Design for Manufacturability (CRC Press, Boca Raton 2014)Google Scholar
  21. 42.21
    M.G. da Silva, R. Giasolli, S. Cunningham, D. DeRoo: MEMS design for manufacturability. In: Sensors Expo, Boston (2002)Google Scholar
  22. 42.22
    P. Doe: New approaches needed to sustain MEMS growth, (2015) (originally published in EE Times)
  23. 42.23
    A.L. Hartzell, M.G. da Silva, H. Shea: MEMS Reliability (Springer, New York 2011)CrossRefGoogle Scholar
  24. 42.24
    G. Schropfer, M. McNie, M.G. da Silva, R. Davies, A. Rickard, F.X. Musalem: Designing manufacturable MEMS in CMOS compatible processes – Methodology and case studies, Proc. SPIE (2004) doi: 10.1117/12.544971
  25. 42.25
    B. Romanowicz, M.H. Zaman, S.F. Bart, V.L. Rabinovich, I. Tchertkov, C. Hsu, J.R. Gilbert: A methodology and associated CAD tools for Support of concurrent design of MEMS. In: VLSI: Systems on a Chip, ed. by L.M. Silveira, S. Devadas, R.A. Reis (Springer, New York 2000)Google Scholar
  26. 42.26
    S. Maity, S. Liu, S. Rouvillois, G. Lorenz, M. Kamon: Rapidly analyzing parametric resonance and manufacturing yield of MEMS 2D scanning mirrors using hybrid finite-element/behavioral modeling, Proc. SPIE (2014) doi: 10.1117/12.2041067
  27. 42.27
    M.G. da Silva, S. Bouwstra: Critical comparison of metrology techniques for MEMS, Proc. SPIE (2007) doi: 10.1117/12.714852
  28. 42.28
    L.E. Felton, N. Hablutzel, W.A. Webster, K.P. Harney: Chip scale packaging of a MEMS accelerometer. In: Proc. 54th Electron. Compon. Technol. Conf. (2004) doi: 10.1109/ECTC.2004.1319439 Google Scholar
  29. 42.29
    MEMS Industry Group: Foundry Engagement Guide, MEMS Industry Group (2016)
  30. 42.30
    M.J. Madou: Fundamentals of Microfabrication (CRC Press, Boca Raton 2000)Google Scholar
  31. 42.31
    T. Rogers, N. Aitken, K. Stribley, J. Boyd: Improvements in MEMS gyroscope production as a result of using in situ, aligned, current-limited anodic bonding, Sens. Actuators A 123/124, 106–110 (2005)CrossRefGoogle Scholar
  32. 42.32
    M.R. Douglass: DMD reliability: A MEMS success story, Proc. SPIE (2003) doi: 10.1117/12.478212
  33. 42.33
    R. Maboudian, R.T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1 (1997)CrossRefGoogle Scholar
  34. 42.34
    C.H. Mastrangelo: Surface force induced failures in microelectromechanical systems. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 367–395CrossRefGoogle Scholar
  35. 42.35
    R. Maboudian, R.T. Howe: Stiction reduction processes for surface micromachines, Tribology Lett 3(3), 215–221 (1997)CrossRefGoogle Scholar
  36. 42.36
    C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces: Part I. Basic theory, J. Microelectromech. Syst. 2(1), 33–43 (1993)CrossRefGoogle Scholar
  37. 42.37
    C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces: Part II. Experiments, J. Microelectromech. Syst. 2(1), 44–55 (1993)CrossRefGoogle Scholar
  38. 42.38
    W.M. van Spengen, R. Puers, I. De Wolf: A physical model to predict stiction in MEMS, J. Micromech. Microeng. 12, 702–713 (2002)CrossRefGoogle Scholar
  39. 42.39
    A.C. Fischer, F. Forsberg, M. Lapisa, S.J. Bleiker, G. Stemme, N. Roxshed, F. Niklaus: Integrating MEMS and ICs, Microsyst. Nanoneng. (2015) doi: 10.1038/micronano.2015.5
  40. 42.40
    C.A. Bower, E. Menard, S. Bonafede, S. Burroughs: Transfer-printed microscale integrated circuits. In: Proc. Electron. Compon. Technol. Conf. (2009) doi: 10.1109/ECTC.2009.5074077 Google Scholar
  41. 42.41
    A. Technology Corporation: Fluidic Self-Assemby White Paper (Allen Technology Corporation, Addison 1999)Google Scholar
  42. 42.42
    T. Fukushima, H. Hashiguchi, J. Bea, Y. Ohara, M. Murugesan, K.-W. Lee, T. Tanaka, M. Koyanagi: New chip-to-wafer 3D integration technology using hybrid self-assembly and electrostatic temporary bonding. In: Proc. IEEE Int. Electron Dev. Meet. (IEDM) (2012) doi: 10.1109/IEDM.2012.6479157 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • T. Kieran Nunan
    • 1
  • Mark G. da Silva
    • 2
  1. 1.Kieran Nunan ConsultingCarlisleUSA
  2. 2.High Performance SensorsAnalog Devices Inc.WilmingtonUSA

Personalised recommendations