Failure Mechanisms in MEMS/NEMS Devices

  • W. Merlijn van Spengen
  • Robert Modliński
  • Robert Puers
  • Anne Jourdain
Part of the Springer Handbooks book series (SPRINGERHAND)

Abstract

The commercialization of MEMS/NEMS devices is proceeding slower than expected, because the reliability problems of microscopic components differ from macroscopically known behavior. In this chapter, we provide an overview of the state of the art in MEMS/NEMS reliability. We discuss the specific, MEMS-related problems caused by stiction due to surface forces and electric charge. Materials issues such as creep and fatigue are treated as well. Nanoscale wear is covered briefly. MEMS packaging is also discussed, because the reliability of MEMS/NEMS components critically depends on the available protection from the environment.

References

  1. 40.1
    W.M. Miller, D.M. Tanner, S.L. Miller, K.A. Peterson: MEMS reliability. The challenge and the promise. In: Proc. 4th Annu. Reliab. Chall., Dublin (Sandia National Labs, Albuquerque 1998) pp. 4-1–4-7Google Scholar
  2. 40.2
    M.R. Douglass: DMD reliability. A MEMS success story, Proc. SPIE 4980, 1–11 (2003)CrossRefGoogle Scholar
  3. 40.3
    J. Bienstman: From product to production in automotive MEMS. In: Proc. MicroMech. Eur (IOP, Leuven 2004) pp. 107–108Google Scholar
  4. 40.4
    W.M. van Spengen: MEMS reliability from a failure mechanisms perspective, Microelectron. Reliab. 43, 1049–1060 (2003)CrossRefGoogle Scholar
  5. 40.5
    B. Stark (Ed.): MEMS Reliability Assurance Guidelines for Space Applications (National Aeronautics Space Administration (NASA) and Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena 1999)Google Scholar
  6. 40.6
    D.M. Tanner, N.F. Smith, D.J. Bowman, W.P. Eaton, K.A. Peterson: First reliability test of a surface micromachined microengine using SHiMMeR, Proc. SPIE 3224, 14–23 (1997)CrossRefGoogle Scholar
  7. 40.7
    G.F. LaVigne, S.L. Miller: A performance analysis system for MEMS using automated imaging methods. In: Proc. IEEE Int. Test Conf. (IEEE, Washington 1998) pp. 442–447Google Scholar
  8. 40.8
    W.M. van Spengen, R. Puers, R. Mertens, I. De Wolf: High resolution optical investigation of small out-of-plane movements and fast vibrations; characterization and failure analysis of MEMS, Microsyst. Technol. 10, 89–96 (2004)CrossRefGoogle Scholar
  9. 40.9
    P. Krehl, S. Engemann, C. Rembe, E.P. Hofer: High-speed visualization, a powerful diagnostic tool for microactuators – Retrospect and prospect, Microsyst. Technol. 5, 113–132 (1999)CrossRefGoogle Scholar
  10. 40.10
    C. Rembe, L. Muller, R.S. Muller, R.T. Howe: Full three-dimensional motion characterization of a gimballed electrostatic microactuator. In: Proc. IEEE Annu. Int. Reliab. Phys. Symp. (IRPS), ed. by E.S. Sneyder (IEEE, Orlando 2001) pp. 91–98Google Scholar
  11. 40.11
    J.S. Burdess, A.J. Harris, D. Wood, R.J. Pitcher, D. Glennie: A system for the dynamic characterization of microstructures, J. MEMS 6, 322–328 (1997)Google Scholar
  12. 40.12
    M.R. Hart, R.A. Conant, K.Y. Lau, R.S. Muller: Stroboscopic interferometer system for dynamic MEMS characterization, J. MEMS 9, 409–418 (2000)Google Scholar
  13. 40.13
    C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces – Part I: Basic theory, J. MEMS 2, 33–43 (1993)Google Scholar
  14. 40.14
    C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces – Part II: Experiments, J. MEMS 2, 44–55 (1993)Google Scholar
  15. 40.15
    M.P. de Boer, J.A. Knapp, T.M. Mayer, T.A. Michalske: The role of interfacial properties on MEMS performance and reliability, Proc. SPIE 3825, 2–15 (1999)CrossRefGoogle Scholar
  16. 40.16
    F.P. Bowden, D. Tabor: The Friction and Lubrication of Solids (Clarendon, Oxford 1950)MATHGoogle Scholar
  17. 40.17
    R. Maboudian, R.T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1–20 (1997)CrossRefGoogle Scholar
  18. 40.18
    R. Legtenberg, H.A.C. Tilmans, J. Elders, M. Elwenspoek: Stiction of surface micromachined structures after rinsing and drying: Model and investigation of adhesion mechanisms, Sens. Actuators A 43, 230–238 (1994)CrossRefGoogle Scholar
  19. 40.19
    N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, M. Elwenspoek: Stiction in surface micromachining, J. Micromech. Microeng. 6, 385–397 (1996)CrossRefGoogle Scholar
  20. 40.20
    J. Israelachvili: Intermolecular and Surface Forces (Academic, London 1991)Google Scholar
  21. 40.21
    K. Komvopoulos: Surface engineering and microtribology for microelectro-mechanical systems, Wear 200, 305–327 (1996)CrossRefGoogle Scholar
  22. 40.22
    W.M. van Spengen, W.M.R. Puers, I. De Wolf: A physical model to predict stiction in MEMS, J. Micromech. Microeng. 12, 702–713 (2002)CrossRefGoogle Scholar
  23. 40.23
    J.A. Greenwood, J.B.P. Williamson: Contact of nominally flat surfaces, Proc. R. Soc. A 295, 300–319 (1966)CrossRefGoogle Scholar
  24. 40.24
    B. Bhushan: Methodology for roughness measurement and contact analysis for optimization of interface roughness, IEEE Trans. Mag. 32, 1819–1825 (1996)CrossRefGoogle Scholar
  25. 40.25
    B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)Google Scholar
  26. 40.26
    L. Kogut, K. Komvopoulos: Analysis of interfacial adhesion based on electrical contact resistance, J. Appl. Phys. 94, 6386–6390 (2003)CrossRefGoogle Scholar
  27. 40.27
    Y.-P. Zhao, L.S. Wang, T.X. Yu: Mechanics of adhesion in MEMS – A review, J. Adhes. Sci. Technol. 17, 519–546 (2003)CrossRefGoogle Scholar
  28. 40.28
    J. Elders, H.V. Jansen, M. Elwenspoek: Materials analysis of fluorocarbon films for MEMS applications. In: Proc. Investig. Micro Struct. Sens. Actuators Mach. Robot. Syst. (IEEE, New York 1994) pp. 170–175Google Scholar
  29. 40.29
    P.F. Man, B.P. Gogoi, H. Mastrangelo: Elimination of post-release adhesion in microstructures using conformal fluorocarbon coatings, J. MEMS 6, 25–34 (1997)Google Scholar
  30. 40.30
    U. Srinivasan, M.R. Houston, R.T. Howe, R. Maboudian: Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines, J. MEMS 7, 252–260 (1998)Google Scholar
  31. 40.31
    R. Maboudian, W.R. Ashurst, C. Carraro: Self-assembled monoayers as anti-stiction coatings for MEMS: Characteristics and recent developments, Sens. Actuators A 82, 219–223 (2000)CrossRefGoogle Scholar
  32. 40.32
    B.-H. Kim, C.-H. Oh, K. Chun, T.-D. Chung, J.-W. Byun, Y.-S. Lee: A new class of surface modifiers for stiction reduction. In: Proc. 12th Int. Conf. Micro Electro Mech. Syst. (IEEE, Piscataway 1999) pp. 189–193Google Scholar
  33. 40.33
    K.A. Peterson, P. Tangyunyong, A.A. Pimentel: Failure analysis of surface micromachined microengines, Proc. SPIE 3512, 190–200 (1998)CrossRefGoogle Scholar
  34. 40.34
    J. Wibbeler, G. Pfeifer, M. Hietschold: Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS), Sens. Actuators A 71, 74–80 (1998)CrossRefGoogle Scholar
  35. 40.35
    A.R. Knudson, S. Buchner, P. McDonald, W.J. Stapor, A.B. Campbell, K.S. Grabowski, D.L. Knies: The effects of radiation on MEMS accelerometers, IEEE Trans. Nucl. Sci. 43, 3122–3126 (1996)CrossRefGoogle Scholar
  36. 40.36
    C.I. Lee, A.H. Johnston, W.C. Tang, C.E. Barnes: Total dose effects on microelectromechanical systems (MEMS): Accelerometers, IEEE Trans. Nucl. Sci. 43, 3127–3132 (1996)CrossRefGoogle Scholar
  37. 40.37
    G.M. Rebeiz: RF MEMS: Theory, Design and Technology (Wiley, Hoboken 2003)CrossRefGoogle Scholar
  38. 40.38
    C.L. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, M. Eberly: Lifetime characterization of capacitive RF MEMS switches. In: Proc. IEEE MTT-S Int. Microw. Symp. (IEEE, New York 2001) pp. 227–230Google Scholar
  39. 40.39
    S. Zafar, A. Callegari, E. Gusev, M.V.P. Fischetti: Charge trapping in high k gate dielectric stacks. In: Proc. Int. Electron Devices Meet. (IEDM), ed. by S. Ikeda (IEEE, San Francisco 2002) pp. 517–520CrossRefGoogle Scholar
  40. 40.40
    J.C. Ehmke, C.L. Goldsmith, Z.J. Yao, S.M. Eshelman: Method and apparatus for switching high frequency signals, US Patent 6391675 (1999)Google Scholar
  41. 40.41
    J.R. Reid: Simulation and measurement of dielectric charging in electrostatically actuated capacitive microwave switches. In: Proc. Model. Simul. Microsyst. (MSM), ed. by M. Laudon, B. Romanowicz (NSTI, San Juan 2002) pp. 250–253Google Scholar
  42. 40.42
    W.M. van Spengen, R. Puers, R. Mertens, I. De Wolf: A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches, Micromech. Microeng. 14, 514–521 (2004)CrossRefGoogle Scholar
  43. 40.43
    X. Rottenberg, B. Nauwelaers, W. De Raedt, H.A.C. Tilmans: Distributed dielectric charging and its impact on RF MEMS devices. In: Proc. 34th Eur. Microw. Conf. (Artech House, Amsterdam 2004) pp. 77–80Google Scholar
  44. 40.44
    W.M. van Spengen, R. Puers, I. De Wolf: RF MEMS reliability – The challenge, the physics, and the reward. In: Proc. MME, ed. by R. Puers (IOP, Leuven 2004) pp. 319–325Google Scholar
  45. 40.45
    F.N.R. Nabarro, H.L. de Villiers: The Physics of Creep (Taylor Francis, New York 1995)Google Scholar
  46. 40.46
    H.E. Boyer: Atlas of Creep and Stress-Rupture Curves (ASM International, Metals Park 1988)Google Scholar
  47. 40.47
    P.F. Van Kessel, L.J. Hornbeck, R.E. Meier, M.R. Douglass: A MEMS-based projection display, Proc. IEEE 86, 1687–1704 (1998)CrossRefGoogle Scholar
  48. 40.48
    H.-J. Lee, G. Cornella, J.C. Bravman: Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications, Appl. Phys. Lett. 76, 3415–3417 (2000)CrossRefGoogle Scholar
  49. 40.49
    H.S. Cho, K.J. Hemker, K. Lian, J. Goettert, G. Dirras: Measured mechanical properties of LIGA Ni structures, Sens. Actuators A 103, 59–63 (2003)CrossRefGoogle Scholar
  50. 40.50
    R. Modlinski, A. Witvrouw, P. Ratchev, V. Simons, A. Jourdain, H.A.C. Tilmans, R. Puers, J. den Toonder, I. De Wolf: Creep as a reliability problem in MEMS, J. Microelectron. Reliab. 44, 1733–1738 (2004)CrossRefGoogle Scholar
  51. 40.51
    K.P. Larsen, A.A. Rasmussen, J.T. Ravnkilde, M. Ginnerup, O. Hansen: MEMS devices for bending test: Measurements of fatigue and creep of electroplated nickel, Sens. Actuators A 103, 156–164 (2003)CrossRefGoogle Scholar
  52. 40.52
    W.M. Yin, S.H. Whang, R. Morshams, C.H.P. Xiao: Creep behavior of nanocrystalline nickel at 290 and 373 K, Mater. Sci. Eng. A 2301, 18–22 (2001)CrossRefGoogle Scholar
  53. 40.53
    J.D. Brazzle, W.P. Taylor, B. Ganesh, J.J. Price, J.J. Bernstein: Solution hardened platinum alloy flexure materials for improved performance and reliability of MEMS devices, J. Micromech. Microeng. 15, 43–48 (2005)CrossRefGoogle Scholar
  54. 40.54
    B.D. Jensen, J.L. Volakis, K. Saitou, K. Kurabayashi: Impact of skin effect on thermal behavior of RF-MEMS switches. In: 6th ASME-JSME Conf., ed. by S. Nishio, A. Lavine (Kona, Hawaii 2003), TED-AJ03-420Google Scholar
  55. 40.55
    X. Rottenberg, B. Nauwelaers, W. De Raedt, H.A.C. Tilmans: RF current and power handling of RF-MEMS shunt switches. In: Proc. MEMSWAVE (2004) pp. C1–C4Google Scholar
  56. 40.56
    M.R. Douglass: Lifetime estimates and unique failure mechanisms of the digital micromirror device. In: 36th Int. Reliab. Phys. Symp. (IRPS), ed. by A.N. Campbell (IEEE, Reno 1998) pp. 9–16Google Scholar
  57. 40.57
    J.J. Yao: RF MEMS from a device perspective, J. Micromech. Microeng. 10, R9–R38 (2000)CrossRefGoogle Scholar
  58. 40.58
    D.T. Read, J.W. Dally: Fatigue of microlithographically patterned free-standing aluminum thin film under axial stresses, J. Electron. Packag. 117, 1–6 (1995)CrossRefGoogle Scholar
  59. 40.59
    G. Cornella, R.P. Vinci, R. Suryanarayanan Iyer, R.H. Dauskardt, J.C. Bravman: Observations of low-cycle fatigue of Al thin films for MEMS applications, Mater. Res. Soc. Symp. Proc. 518, 81–86 (1998)CrossRefGoogle Scholar
  60. 40.60
    S.M. Wiederhorn, E.R. Fuller Jr., R. Thomson: Micromechanisms of crack growth in ceramics and glasses in corrosive environments, Met. Sci. 14, 450–458 (1980)CrossRefGoogle Scholar
  61. 40.61
    W.W. van Arsdell, S.B. Brown: Subcritical crack growth in silicon MEMS, J. MEMS 8, 319–327 (1999)Google Scholar
  62. 40.62
    J.A. Connally, S.B. Brown: Micromechanical fatigue testing. In: TRANSDUCERS ’91, Int. Conf. Solid-State Sens. Actuators Dig. (IEEE, New York 1991) pp. 953–956Google Scholar
  63. 40.63
    S.B. Brown, W. van Arsdell, C.L. Muhlstein: Materials reliability in MEMS devices. In: TRANSDUCERS ’97, Int. Conf. Solid-State Sens. Actuators Dig., Vol. 1 (IEEE, New York 1997) pp. 591–594CrossRefGoogle Scholar
  64. 40.64
    S.B. Brown, E. Jansen: Reliability and long term stability of MEMS. In: Summer Top. Meet. Dig. Opt. MEMS Their Appl. (IEEE, New York 1996) pp. 9–10Google Scholar
  65. 40.65
    S.B. Brown, G. Povirk, J. Connally: Measurement of slow crack growth in silicon and nickel micromechanical devices. In: Proc. Micro Electro Mech. Syst. Investig. Micro Struct. Sens. Actuators Mach. Syst. (IEEE, New York 1993) pp. 99–102Google Scholar
  66. 40.66
    C.L. Muhlstein, S.B. Brown, R.O. Ritchie: High cycle fatigue and durability of polycrystalline silicon thin films in ambient air, Sens. Actuators A 94, 177–188 (2001)CrossRefGoogle Scholar
  67. 40.67
    H. Kapels, R. Aigner, J. Binder: Fracture strength and fatigue of polysilicon determined by a novel thermal actuator, Trans. Electron. Dev. 47, 1522–1528 (2000)CrossRefGoogle Scholar
  68. 40.68
    H. Kahn, N. Tayebi, R. Ballerini, R.L. Mullen, A.H. Heuer: Fracture toughness of polysilicon MEMS devices, Sens. Actuators A 82, 274–280 (2000)CrossRefGoogle Scholar
  69. 40.69
    J. Bagdahn, W.N. Sharpe Jr.: Fatigue of polysilicon silicon under long-term cyclic loading, Sens. Actuators A 103, 9–15 (2003)CrossRefGoogle Scholar
  70. 40.70
    K.J. Gabriel, F. Behi, R. Mahadevan: In-situ friction and wear measurements in integrated polysilicon mechanisms, Sens. Actuators A A21–A23, 184–188 (1990)CrossRefGoogle Scholar
  71. 40.71
    M. Mehregany, S.D. Senturia, J.H. Lang: Friction and wear in microfabricated harmonic side-drive motors. In: Tech. Dig. IEEE Solid-State Sens. Actuator Workshop, Hilton Head Island (IEEE, New York 1990) pp. 17–22CrossRefGoogle Scholar
  72. 40.72
    D.M. Tanner, W.M. Miller, W.P. Eaton, L.W. Irwin, K.A. Peterson, M.T. Dugger, D.C. Senft, N.F. Smith, P. Tanyunyong, S.L. Miller: The effect of frequency on the lifetime of a surface micromachined microengine driving a load. In: Int. Reliab. Phys. Symp. Proc. (IRPS), ed. by A.N. Campbell (IEEE, Reno 1998) pp. 26–35Google Scholar
  73. 40.73
    D.M. Tanner: MEMS Reliability: Infrastructure, Test Structures, Experiments and Failure Modes, Sandia Rep. (Sandia National Laboratories, Livermore 2000) available from National Technical Information Service, US Department of Commerce, Springfield or http://www.sandia.gov/mstc/technologies/micromachines/tech-info/bibliography/biblog_char.html
  74. 40.74
    A.D. Romig Jr., M.T. Dugger, P.J. McWorther: Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability, Acta Mater. 51, 5837–5866 (2003)CrossRefGoogle Scholar
  75. 40.75
    J.A. Ruan, B. Bhushan: Atomic-scale friction measurement using friction force microscopy. 1. General – Principles and new measurement techniques, J. Tribol. 116, 378–388 (1994)CrossRefGoogle Scholar
  76. 40.76
    H. Lui, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel triboapparatus, J. Vac. Sci. Technol. A 21, 1528–1538 (2003)Google Scholar
  77. 40.77
    M.P. de Boer: A hinged-pad test structure for sliding friction measurement in micromachining, Proc. SPIE 3512, 241–250 (1998)CrossRefGoogle Scholar
  78. 40.78
    S.L. Miller, J.J. Sniegowski, G. LaVigne, P.J. McWorther: Friction in surface micromachined microengines, Proc. SPIE 2722, 197–204 (1996)CrossRefGoogle Scholar
  79. 40.79
    D.C. Senft, M.T. Dugger: Friction and wear in surface micromachined tribological test devices, Proc. SPIE 3224, 31–38 (1997)CrossRefGoogle Scholar
  80. 40.80
    M.P. de Boer, T.M. Mayer: Tribology of MEMS, MSR Bulletin 26, 302–304 (2001)Google Scholar
  81. 40.81
    Z. Rymuza: Control tribological and mechanical properties of MEMS surfaces. Part 1: Critical review, Microsyst. Technol. 5, 173–180 (1999)CrossRefGoogle Scholar
  82. 40.82
    Z. Rymuza, M. Misiak, L. Kuhn, K. Schmidt-Szalowski, Z. Ranek-Boroch: Control tribological and mechanical properties of MEMS surfaces. Part 2: Nanomechanical behavior of self-lubricating ultrathin films, Microsyst. Technol. 5, 181–188 (1999)CrossRefGoogle Scholar
  83. 40.83
    J.G. Fleming, S.S. Mani, J.J. Sniegowski, R.S. Blewer: Tungsten coating for improved wear resistance and reliability of microelectromechanical devices, US Patent 6290859 (2001)Google Scholar
  84. 40.84
    U. Beerschwinger, D. Mathieson, R.L. Reuben, S.J. Yang: A study of wear on MEMS contact morphologies, J. Micromech. Microeng. 4, 95–105 (1994)CrossRefGoogle Scholar
  85. 40.85
    R. Bandorf, H. Lüthje, T. Staedler: Influencing factors on microtribology of DLC films for MEMS and microactuators, Diam. Relat. Mater. 13, 1491–1493 (2004)CrossRefGoogle Scholar
  86. 40.86
    A.P. Musinho, R.D. Mansano, M. Massi, J.M. Jaramillo: Micro-machine fabrication using diamond-like carbon films, Diam. Relat. Mater. 12, 1041–1044 (2003)CrossRefGoogle Scholar
  87. 40.87
    A. Erdemir: Superlubricity and wearless sliding in diamondlike carbon films, Proc. Mater. Res. Soc. 697, 391–403 (2002)Google Scholar
  88. 40.88
    A. Erdemir: Design criteria for superlubricity in carbon films and related microstructures, Tribol. Int. 37, 577–583 (2004)CrossRefGoogle Scholar
  89. 40.89
    A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diam. Relat. Mater. 10, 1952–1962 (2001)CrossRefGoogle Scholar
  90. 40.90
    W.R. Ashurst, M.B.J. Wijesundra, C. Carraro, R. Maboudian: Tribological impact of SiC encapsulation of released polycrystalline silicon microstructures, Tribol. Lett. 71, 195–198 (2004)CrossRefGoogle Scholar
  91. 40.91
    S. Sundararajan, B. Bhushan: Micro/nanotribological studies of polysilicon and SiC films for MEMS applications, Wear 217, 251–261 (1998)CrossRefGoogle Scholar
  92. 40.92
    X. Li, B. Bhushan: Micro/nanotribological characterization of ceramic films for microdevices, Thin Solid Films 340, 210–217 (1999)CrossRefGoogle Scholar
  93. 40.93
    R. Maboudian, W.R. Ashurst, C. Carraro: Tribological challenges in microelectromechanical systems, Tribol. Lett. 12, 95–100 (2002)CrossRefGoogle Scholar
  94. 40.94
    H.A.C. Tilmans, H. Ziad, H. Jansen, O. Di Monaco, A. Jourdain, W. De Raedt, X. Rottenberg, E. De Backer, A. De Caussemaeker, K. Baert: Wafer-level packaged RF-MEMS switches fabricated in a CMOS fab. In: Proc. IEDM 2001 (IEEE, Washington 2001) pp. 921–924Google Scholar
  95. 40.95
    Military Standard (MIL-STD-883): Test Methods and Procedures for MicroelectronicsGoogle Scholar
  96. 40.96
    A. Jourdain, P. De Moor, S. Pamidighantam, H.A.C. Tilmans: Investigation of the hermeticity of BCB-sealed cavities for housing (RF-)MEMS devices. In: Proc. MEMS 2002 (IEEE, Las Vegas 2002) pp. 677–680Google Scholar
  97. 40.97
    I. De Wolf, W.M. van Spengen, R. Modlinski, A. Jourdain, A. Witvrouw, P. Fiorini, H.A.C. Tilmans: Reliability and failure analysis of RF MEMS switches. In: Proc. ISTFA 2002 (ASM, Phoenix 2002) pp. 275–281Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • W. Merlijn van Spengen
    • 1
  • Robert Modliński
    • 2
  • Robert Puers
    • 3
  • Anne Jourdain
    • 4
  1. 1.Falco SystemsAmsterdamNetherlands
  2. 2.EPCOS AGMunichGermany
  3. 3.ESAT/MICASKU LeuvenLeuvenBelgium
  4. 4.IMECLeuvenBelgium

Personalised recommendations