Skip to main content

Failure Mechanisms in MEMS/NEMS Devices

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

The commercialization of MEMS/NEMS devices is proceeding slower than expected, because the reliability problems of microscopic components differ from macroscopically known behavior. In this chapter, we provide an overview of the state of the art in MEMS/NEMS reliability. We discuss the specific, MEMS-related problems caused by stiction due to surface forces and electric charge. Materials issues such as creep and fatigue are treated as well. Nanoscale wear is covered briefly. MEMS packaging is also discussed, because the reliability of MEMS/NEMS components critically depends on the available protection from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.M. Miller, D.M. Tanner, S.L. Miller, K.A. Peterson: MEMS reliability. The challenge and the promise. In: Proc. 4th Annu. Reliab. Chall., Dublin (Sandia National Labs, Albuquerque 1998) pp. 4-1–4-7

    Google Scholar 

  2. M.R. Douglass: DMD reliability. A MEMS success story, Proc. SPIE 4980, 1–11 (2003)

    Article  Google Scholar 

  3. J. Bienstman: From product to production in automotive MEMS. In: Proc. MicroMech. Eur (IOP, Leuven 2004) pp. 107–108

    Google Scholar 

  4. W.M. van Spengen: MEMS reliability from a failure mechanisms perspective, Microelectron. Reliab. 43, 1049–1060 (2003)

    Article  Google Scholar 

  5. B. Stark (Ed.): MEMS Reliability Assurance Guidelines for Space Applications (National Aeronautics Space Administration (NASA) and Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena 1999)

    Google Scholar 

  6. D.M. Tanner, N.F. Smith, D.J. Bowman, W.P. Eaton, K.A. Peterson: First reliability test of a surface micromachined microengine using SHiMMeR, Proc. SPIE 3224, 14–23 (1997)

    Article  Google Scholar 

  7. G.F. LaVigne, S.L. Miller: A performance analysis system for MEMS using automated imaging methods. In: Proc. IEEE Int. Test Conf. (IEEE, Washington 1998) pp. 442–447

    Google Scholar 

  8. W.M. van Spengen, R. Puers, R. Mertens, I. De Wolf: High resolution optical investigation of small out-of-plane movements and fast vibrations; characterization and failure analysis of MEMS, Microsyst. Technol. 10, 89–96 (2004)

    Article  Google Scholar 

  9. P. Krehl, S. Engemann, C. Rembe, E.P. Hofer: High-speed visualization, a powerful diagnostic tool for microactuators – Retrospect and prospect, Microsyst. Technol. 5, 113–132 (1999)

    Article  Google Scholar 

  10. C. Rembe, L. Muller, R.S. Muller, R.T. Howe: Full three-dimensional motion characterization of a gimballed electrostatic microactuator. In: Proc. IEEE Annu. Int. Reliab. Phys. Symp. (IRPS), ed. by E.S. Sneyder (IEEE, Orlando 2001) pp. 91–98

    Google Scholar 

  11. J.S. Burdess, A.J. Harris, D. Wood, R.J. Pitcher, D. Glennie: A system for the dynamic characterization of microstructures, J. MEMS 6, 322–328 (1997)

    Google Scholar 

  12. M.R. Hart, R.A. Conant, K.Y. Lau, R.S. Muller: Stroboscopic interferometer system for dynamic MEMS characterization, J. MEMS 9, 409–418 (2000)

    Google Scholar 

  13. C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces – Part I: Basic theory, J. MEMS 2, 33–43 (1993)

    Google Scholar 

  14. C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces – Part II: Experiments, J. MEMS 2, 44–55 (1993)

    Google Scholar 

  15. M.P. de Boer, J.A. Knapp, T.M. Mayer, T.A. Michalske: The role of interfacial properties on MEMS performance and reliability, Proc. SPIE 3825, 2–15 (1999)

    Article  Google Scholar 

  16. F.P. Bowden, D. Tabor: The Friction and Lubrication of Solids (Clarendon, Oxford 1950)

    MATH  Google Scholar 

  17. R. Maboudian, R.T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1–20 (1997)

    Article  Google Scholar 

  18. R. Legtenberg, H.A.C. Tilmans, J. Elders, M. Elwenspoek: Stiction of surface micromachined structures after rinsing and drying: Model and investigation of adhesion mechanisms, Sens. Actuators A 43, 230–238 (1994)

    Article  Google Scholar 

  19. N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, M. Elwenspoek: Stiction in surface micromachining, J. Micromech. Microeng. 6, 385–397 (1996)

    Article  Google Scholar 

  20. J. Israelachvili: Intermolecular and Surface Forces (Academic, London 1991)

    Google Scholar 

  21. K. Komvopoulos: Surface engineering and microtribology for microelectro-mechanical systems, Wear 200, 305–327 (1996)

    Article  Google Scholar 

  22. W.M. van Spengen, W.M.R. Puers, I. De Wolf: A physical model to predict stiction in MEMS, J. Micromech. Microeng. 12, 702–713 (2002)

    Article  Google Scholar 

  23. J.A. Greenwood, J.B.P. Williamson: Contact of nominally flat surfaces, Proc. R. Soc. A 295, 300–319 (1966)

    Article  Google Scholar 

  24. B. Bhushan: Methodology for roughness measurement and contact analysis for optimization of interface roughness, IEEE Trans. Mag. 32, 1819–1825 (1996)

    Article  Google Scholar 

  25. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  26. L. Kogut, K. Komvopoulos: Analysis of interfacial adhesion based on electrical contact resistance, J. Appl. Phys. 94, 6386–6390 (2003)

    Article  Google Scholar 

  27. Y.-P. Zhao, L.S. Wang, T.X. Yu: Mechanics of adhesion in MEMS – A review, J. Adhes. Sci. Technol. 17, 519–546 (2003)

    Article  Google Scholar 

  28. J. Elders, H.V. Jansen, M. Elwenspoek: Materials analysis of fluorocarbon films for MEMS applications. In: Proc. Investig. Micro Struct. Sens. Actuators Mach. Robot. Syst. (IEEE, New York 1994) pp. 170–175

    Google Scholar 

  29. P.F. Man, B.P. Gogoi, H. Mastrangelo: Elimination of post-release adhesion in microstructures using conformal fluorocarbon coatings, J. MEMS 6, 25–34 (1997)

    Google Scholar 

  30. U. Srinivasan, M.R. Houston, R.T. Howe, R. Maboudian: Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines, J. MEMS 7, 252–260 (1998)

    Google Scholar 

  31. R. Maboudian, W.R. Ashurst, C. Carraro: Self-assembled monoayers as anti-stiction coatings for MEMS: Characteristics and recent developments, Sens. Actuators A 82, 219–223 (2000)

    Article  Google Scholar 

  32. B.-H. Kim, C.-H. Oh, K. Chun, T.-D. Chung, J.-W. Byun, Y.-S. Lee: A new class of surface modifiers for stiction reduction. In: Proc. 12th Int. Conf. Micro Electro Mech. Syst. (IEEE, Piscataway 1999) pp. 189–193

    Google Scholar 

  33. K.A. Peterson, P. Tangyunyong, A.A. Pimentel: Failure analysis of surface micromachined microengines, Proc. SPIE 3512, 190–200 (1998)

    Article  Google Scholar 

  34. J. Wibbeler, G. Pfeifer, M. Hietschold: Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS), Sens. Actuators A 71, 74–80 (1998)

    Article  Google Scholar 

  35. A.R. Knudson, S. Buchner, P. McDonald, W.J. Stapor, A.B. Campbell, K.S. Grabowski, D.L. Knies: The effects of radiation on MEMS accelerometers, IEEE Trans. Nucl. Sci. 43, 3122–3126 (1996)

    Article  Google Scholar 

  36. C.I. Lee, A.H. Johnston, W.C. Tang, C.E. Barnes: Total dose effects on microelectromechanical systems (MEMS): Accelerometers, IEEE Trans. Nucl. Sci. 43, 3127–3132 (1996)

    Article  Google Scholar 

  37. G.M. Rebeiz: RF MEMS: Theory, Design and Technology (Wiley, Hoboken 2003)

    Book  Google Scholar 

  38. C.L. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, M. Eberly: Lifetime characterization of capacitive RF MEMS switches. In: Proc. IEEE MTT-S Int. Microw. Symp. (IEEE, New York 2001) pp. 227–230

    Google Scholar 

  39. S. Zafar, A. Callegari, E. Gusev, M.V.P. Fischetti: Charge trapping in high k gate dielectric stacks. In: Proc. Int. Electron Devices Meet. (IEDM), ed. by S. Ikeda (IEEE, San Francisco 2002) pp. 517–520

    Chapter  Google Scholar 

  40. J.C. Ehmke, C.L. Goldsmith, Z.J. Yao, S.M. Eshelman: Method and apparatus for switching high frequency signals, US Patent 6391675 (1999)

    Google Scholar 

  41. J.R. Reid: Simulation and measurement of dielectric charging in electrostatically actuated capacitive microwave switches. In: Proc. Model. Simul. Microsyst. (MSM), ed. by M. Laudon, B. Romanowicz (NSTI, San Juan 2002) pp. 250–253

    Google Scholar 

  42. W.M. van Spengen, R. Puers, R. Mertens, I. De Wolf: A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches, Micromech. Microeng. 14, 514–521 (2004)

    Article  Google Scholar 

  43. X. Rottenberg, B. Nauwelaers, W. De Raedt, H.A.C. Tilmans: Distributed dielectric charging and its impact on RF MEMS devices. In: Proc. 34th Eur. Microw. Conf. (Artech House, Amsterdam 2004) pp. 77–80

    Google Scholar 

  44. W.M. van Spengen, R. Puers, I. De Wolf: RF MEMS reliability – The challenge, the physics, and the reward. In: Proc. MME, ed. by R. Puers (IOP, Leuven 2004) pp. 319–325

    Google Scholar 

  45. F.N.R. Nabarro, H.L. de Villiers: The Physics of Creep (Taylor Francis, New York 1995)

    Google Scholar 

  46. H.E. Boyer: Atlas of Creep and Stress-Rupture Curves (ASM International, Metals Park 1988)

    Google Scholar 

  47. P.F. Van Kessel, L.J. Hornbeck, R.E. Meier, M.R. Douglass: A MEMS-based projection display, Proc. IEEE 86, 1687–1704 (1998)

    Article  Google Scholar 

  48. H.-J. Lee, G. Cornella, J.C. Bravman: Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications, Appl. Phys. Lett. 76, 3415–3417 (2000)

    Article  Google Scholar 

  49. H.S. Cho, K.J. Hemker, K. Lian, J. Goettert, G. Dirras: Measured mechanical properties of LIGA Ni structures, Sens. Actuators A 103, 59–63 (2003)

    Article  Google Scholar 

  50. R. Modlinski, A. Witvrouw, P. Ratchev, V. Simons, A. Jourdain, H.A.C. Tilmans, R. Puers, J. den Toonder, I. De Wolf: Creep as a reliability problem in MEMS, J. Microelectron. Reliab. 44, 1733–1738 (2004)

    Article  Google Scholar 

  51. K.P. Larsen, A.A. Rasmussen, J.T. Ravnkilde, M. Ginnerup, O. Hansen: MEMS devices for bending test: Measurements of fatigue and creep of electroplated nickel, Sens. Actuators A 103, 156–164 (2003)

    Article  Google Scholar 

  52. W.M. Yin, S.H. Whang, R. Morshams, C.H.P. Xiao: Creep behavior of nanocrystalline nickel at 290 and 373 K, Mater. Sci. Eng. A 2301, 18–22 (2001)

    Article  Google Scholar 

  53. J.D. Brazzle, W.P. Taylor, B. Ganesh, J.J. Price, J.J. Bernstein: Solution hardened platinum alloy flexure materials for improved performance and reliability of MEMS devices, J. Micromech. Microeng. 15, 43–48 (2005)

    Article  Google Scholar 

  54. B.D. Jensen, J.L. Volakis, K. Saitou, K. Kurabayashi: Impact of skin effect on thermal behavior of RF-MEMS switches. In: 6th ASME-JSME Conf., ed. by S. Nishio, A. Lavine (Kona, Hawaii 2003), TED-AJ03-420

    Google Scholar 

  55. X. Rottenberg, B. Nauwelaers, W. De Raedt, H.A.C. Tilmans: RF current and power handling of RF-MEMS shunt switches. In: Proc. MEMSWAVE (2004) pp. C1–C4

    Google Scholar 

  56. M.R. Douglass: Lifetime estimates and unique failure mechanisms of the digital micromirror device. In: 36th Int. Reliab. Phys. Symp. (IRPS), ed. by A.N. Campbell (IEEE, Reno 1998) pp. 9–16

    Google Scholar 

  57. J.J. Yao: RF MEMS from a device perspective, J. Micromech. Microeng. 10, R9–R38 (2000)

    Article  Google Scholar 

  58. D.T. Read, J.W. Dally: Fatigue of microlithographically patterned free-standing aluminum thin film under axial stresses, J. Electron. Packag. 117, 1–6 (1995)

    Article  Google Scholar 

  59. G. Cornella, R.P. Vinci, R. Suryanarayanan Iyer, R.H. Dauskardt, J.C. Bravman: Observations of low-cycle fatigue of Al thin films for MEMS applications, Mater. Res. Soc. Symp. Proc. 518, 81–86 (1998)

    Article  Google Scholar 

  60. S.M. Wiederhorn, E.R. Fuller Jr., R. Thomson: Micromechanisms of crack growth in ceramics and glasses in corrosive environments, Met. Sci. 14, 450–458 (1980)

    Article  Google Scholar 

  61. W.W. van Arsdell, S.B. Brown: Subcritical crack growth in silicon MEMS, J. MEMS 8, 319–327 (1999)

    Google Scholar 

  62. J.A. Connally, S.B. Brown: Micromechanical fatigue testing. In: TRANSDUCERS ’91, Int. Conf. Solid-State Sens. Actuators Dig. (IEEE, New York 1991) pp. 953–956

    Google Scholar 

  63. S.B. Brown, W. van Arsdell, C.L. Muhlstein: Materials reliability in MEMS devices. In: TRANSDUCERS ’97, Int. Conf. Solid-State Sens. Actuators Dig., Vol. 1 (IEEE, New York 1997) pp. 591–594

    Google Scholar 

  64. S.B. Brown, E. Jansen: Reliability and long term stability of MEMS. In: Summer Top. Meet. Dig. Opt. MEMS Their Appl. (IEEE, New York 1996) pp. 9–10

    Google Scholar 

  65. S.B. Brown, G. Povirk, J. Connally: Measurement of slow crack growth in silicon and nickel micromechanical devices. In: Proc. Micro Electro Mech. Syst. Investig. Micro Struct. Sens. Actuators Mach. Syst. (IEEE, New York 1993) pp. 99–102

    Google Scholar 

  66. C.L. Muhlstein, S.B. Brown, R.O. Ritchie: High cycle fatigue and durability of polycrystalline silicon thin films in ambient air, Sens. Actuators A 94, 177–188 (2001)

    Article  Google Scholar 

  67. H. Kapels, R. Aigner, J. Binder: Fracture strength and fatigue of polysilicon determined by a novel thermal actuator, Trans. Electron. Dev. 47, 1522–1528 (2000)

    Article  Google Scholar 

  68. H. Kahn, N. Tayebi, R. Ballerini, R.L. Mullen, A.H. Heuer: Fracture toughness of polysilicon MEMS devices, Sens. Actuators A 82, 274–280 (2000)

    Article  Google Scholar 

  69. J. Bagdahn, W.N. Sharpe Jr.: Fatigue of polysilicon silicon under long-term cyclic loading, Sens. Actuators A 103, 9–15 (2003)

    Article  Google Scholar 

  70. K.J. Gabriel, F. Behi, R. Mahadevan: In-situ friction and wear measurements in integrated polysilicon mechanisms, Sens. Actuators A A21–A23, 184–188 (1990)

    Article  Google Scholar 

  71. M. Mehregany, S.D. Senturia, J.H. Lang: Friction and wear in microfabricated harmonic side-drive motors. In: Tech. Dig. IEEE Solid-State Sens. Actuator Workshop, Hilton Head Island (IEEE, New York 1990) pp. 17–22

    Chapter  Google Scholar 

  72. D.M. Tanner, W.M. Miller, W.P. Eaton, L.W. Irwin, K.A. Peterson, M.T. Dugger, D.C. Senft, N.F. Smith, P. Tanyunyong, S.L. Miller: The effect of frequency on the lifetime of a surface micromachined microengine driving a load. In: Int. Reliab. Phys. Symp. Proc. (IRPS), ed. by A.N. Campbell (IEEE, Reno 1998) pp. 26–35

    Google Scholar 

  73. D.M. Tanner: MEMS Reliability: Infrastructure, Test Structures, Experiments and Failure Modes, Sandia Rep. (Sandia National Laboratories, Livermore 2000) available from National Technical Information Service, US Department of Commerce, Springfield or http://www.sandia.gov/mstc/technologies/micromachines/tech-info/bibliography/biblog_char.html

  74. A.D. Romig Jr., M.T. Dugger, P.J. McWorther: Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability, Acta Mater. 51, 5837–5866 (2003)

    Article  Google Scholar 

  75. J.A. Ruan, B. Bhushan: Atomic-scale friction measurement using friction force microscopy. 1. General – Principles and new measurement techniques, J. Tribol. 116, 378–388 (1994)

    Article  Google Scholar 

  76. H. Lui, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel triboapparatus, J. Vac. Sci. Technol. A 21, 1528–1538 (2003)

    Google Scholar 

  77. M.P. de Boer: A hinged-pad test structure for sliding friction measurement in micromachining, Proc. SPIE 3512, 241–250 (1998)

    Article  Google Scholar 

  78. S.L. Miller, J.J. Sniegowski, G. LaVigne, P.J. McWorther: Friction in surface micromachined microengines, Proc. SPIE 2722, 197–204 (1996)

    Article  Google Scholar 

  79. D.C. Senft, M.T. Dugger: Friction and wear in surface micromachined tribological test devices, Proc. SPIE 3224, 31–38 (1997)

    Article  Google Scholar 

  80. M.P. de Boer, T.M. Mayer: Tribology of MEMS, MSR Bulletin 26, 302–304 (2001)

    Google Scholar 

  81. Z. Rymuza: Control tribological and mechanical properties of MEMS surfaces. Part 1: Critical review, Microsyst. Technol. 5, 173–180 (1999)

    Article  Google Scholar 

  82. Z. Rymuza, M. Misiak, L. Kuhn, K. Schmidt-Szalowski, Z. Ranek-Boroch: Control tribological and mechanical properties of MEMS surfaces. Part 2: Nanomechanical behavior of self-lubricating ultrathin films, Microsyst. Technol. 5, 181–188 (1999)

    Article  Google Scholar 

  83. J.G. Fleming, S.S. Mani, J.J. Sniegowski, R.S. Blewer: Tungsten coating for improved wear resistance and reliability of microelectromechanical devices, US Patent 6290859 (2001)

    Google Scholar 

  84. U. Beerschwinger, D. Mathieson, R.L. Reuben, S.J. Yang: A study of wear on MEMS contact morphologies, J. Micromech. Microeng. 4, 95–105 (1994)

    Article  Google Scholar 

  85. R. Bandorf, H. LĂŒthje, T. Staedler: Influencing factors on microtribology of DLC films for MEMS and microactuators, Diam. Relat. Mater. 13, 1491–1493 (2004)

    Article  Google Scholar 

  86. A.P. Musinho, R.D. Mansano, M. Massi, J.M. Jaramillo: Micro-machine fabrication using diamond-like carbon films, Diam. Relat. Mater. 12, 1041–1044 (2003)

    Article  Google Scholar 

  87. A. Erdemir: Superlubricity and wearless sliding in diamondlike carbon films, Proc. Mater. Res. Soc. 697, 391–403 (2002)

    Google Scholar 

  88. A. Erdemir: Design criteria for superlubricity in carbon films and related microstructures, Tribol. Int. 37, 577–583 (2004)

    Article  Google Scholar 

  89. A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diam. Relat. Mater. 10, 1952–1962 (2001)

    Article  Google Scholar 

  90. W.R. Ashurst, M.B.J. Wijesundra, C. Carraro, R. Maboudian: Tribological impact of SiC encapsulation of released polycrystalline silicon microstructures, Tribol. Lett. 71, 195–198 (2004)

    Article  Google Scholar 

  91. S. Sundararajan, B. Bhushan: Micro/nanotribological studies of polysilicon and SiC films for MEMS applications, Wear 217, 251–261 (1998)

    Article  Google Scholar 

  92. X. Li, B. Bhushan: Micro/nanotribological characterization of ceramic films for microdevices, Thin Solid Films 340, 210–217 (1999)

    Article  Google Scholar 

  93. R. Maboudian, W.R. Ashurst, C. Carraro: Tribological challenges in microelectromechanical systems, Tribol. Lett. 12, 95–100 (2002)

    Article  Google Scholar 

  94. H.A.C. Tilmans, H. Ziad, H. Jansen, O. Di Monaco, A. Jourdain, W. De Raedt, X. Rottenberg, E. De Backer, A. De Caussemaeker, K. Baert: Wafer-level packaged RF-MEMS switches fabricated in a CMOS fab. In: Proc. IEDM 2001 (IEEE, Washington 2001) pp. 921–924

    Google Scholar 

  95. Military Standard (MIL-STD-883): Test Methods and Procedures for Microelectronics

    Google Scholar 

  96. A. Jourdain, P. De Moor, S. Pamidighantam, H.A.C. Tilmans: Investigation of the hermeticity of BCB-sealed cavities for housing (RF-)MEMS devices. In: Proc. MEMS 2002 (IEEE, Las Vegas 2002) pp. 677–680

    Google Scholar 

  97. I. De Wolf, W.M. van Spengen, R. Modlinski, A. Jourdain, A. Witvrouw, P. Fiorini, H.A.C. Tilmans: Reliability and failure analysis of RF MEMS switches. In: Proc. ISTFA 2002 (ASM, Phoenix 2002) pp. 275–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

van Spengen, W.M., ModliƄski, R., Puers, R., Jourdain, A. (2017). Failure Mechanisms in MEMS/NEMS Devices. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics