Advertisement

3-D Nanostructure Fabrication by Focused-Ion Beam, Electron- and Laser Beam

  • Shinji Matsui
  • Hiroaki Misawa
  • Quan Sun
Part of the Springer Handbooks book series (SHB)

Abstract

In this chapter, we describe three-dimensional (3-D ) nanostructure fabrication techniques using focused-ion-beam (FIB )-induced chemical vapor deposition (CVD ), electron-beam (EB )-induced CVD, and femtosecond laser (fs-laser ) techniques. We first describe 30 keV Ga+ FIB-induced CVD using a phenanthrene (C14H10) source gas as the precursor. A diamond-like amorphous carbon film is deposited during this process; it has a Young's modulus exceeding 600 GPa, making it potentially highly desirable for various applications. A three-dimensional pattern generator system has been developed to make arbitrary three-dimensional nanostructures. We also discuss microstructure plastic art, which is a new field that has been made possible by microbeam technology, and we present examples of such art, including a micro wine glass with an external diameter of 2.75 μm and a height of 12 μm. We then discuss free-space nanowiring and show by using a mixture of C14H10 and W ( CO)6 that the electrical properties indicate an increase in metal content results in a lower resistivity. We also demonstrate that a Morpho butterfly scale quasistructure fabricated by FIB-induced CVD has almost the same optical characteristics as a real Morpho butterfly scale. We then discuss three-dimensional nanostructure fabrication using EB-induced CVD. Because of the nanometer resolution, EB-induced CVD is now indispensable for mask repair techniques for the 193 nm node. According to real-time observations by transmission electron microscopy, the W clusters, as the initial growth stage, are formed first followed by the W layer which forms as W clusters coalesce due to EB irradiation. We go on to discuss photonic crystals and Smith–Purcell electron optics as examples of three-dimensional nanostructure applications using EB-induced CVD. Finally, we describe femtosecond-laser-assisted micro/nano fabrication which has been recognized as a promising technique to fabricate three-dimensional structures inside transparent materials. The spatial resolution can reach submicrometer levels and even tens of nanometers owing to suppression of the involved heat diffusion and nonlinear adsorption. We discuss three-dimensional femtosecond laser nanofabrication using the direct laser writing technique and multiple beam interference lithography and describe the fabrication of photonic crystals in a photoresist.

References

  1. 4.1
    S. Matsui: Nanostructure fabrication using electron beam and its application to nanometer devices, Proc. IEEE 85, 629–642 (1997)CrossRefGoogle Scholar
  2. 4.2
    A. Wargner, J.P. Levin, J.L. Mauer, P.G. Blauner, S.J. Kirch, P. Long: X-ray mask repair with focused ion beams, J. Vac. Sci. Technol. B 8, 1557–1564 (1990)CrossRefGoogle Scholar
  3. 4.3
    O. Lehmann, M. Stuke: Generation of three-dimensional free-standing metal micro-objects by laser chemical processing, Appl. Phys. A 53, 343–345 (1991)CrossRefGoogle Scholar
  4. 4.4
    H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994)CrossRefGoogle Scholar
  5. 4.5
    S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 18, 3181–3184 (2000)CrossRefGoogle Scholar
  6. 4.6
    H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)CrossRefGoogle Scholar
  7. 4.7
    K. Kand, J. Igaki, Y. Kato, R. Kometani, A. Saikubo, S. Matsui: NEXAFA study on carbon-based material formed by focused-ion-beam chemical-vapor-deposition, Radiat. Phys. Chem. 75, 1850–1854 (2006)CrossRefGoogle Scholar
  8. 4.8
    J. Igaki, A. Saikubo, R. Kometani, K. Kanda, T. Suzuki, K. Niihara, S. Matsui: Elementary analysis of diamond-like carbon film formed by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 46, 8003–8004 (2007)CrossRefGoogle Scholar
  9. 4.9
    T. Hoshino, K. Watanabe, R. Kometani, T. Morita, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Development of three-dimensional pattern-generating system for focused-ion-beam chemical-vapor-deposition, J. Vac. Sci. Technol. B 21, 2732–2736 (2003)CrossRefGoogle Scholar
  10. 4.10
    R. Kometani, S. Ishihara, T. Kaito, S. Matsui: In situ observation of the three-dimensional nano-structure growth on focused-ion-beam chemical vapor deposition by scanning electron microscope, Appl. Phys. Express 1, 055001 (2008)CrossRefGoogle Scholar
  11. 4.11
    E. Buks, M.L. Roukes: Stiction, adhesion energy and the Casimir effect in micromechanical systems, Phys. Rev. B 63, 033402 (2001)CrossRefGoogle Scholar
  12. 4.12
    J. Fujita, M. Ishida, T. Sakamoto, Y. Ochiai, T. Kaito, S. Matsui: Observation and characteristics of mechanical vibration in three-dimensional nanostructures and pillars grown by focused ion beam chemical vapor deposition, J. Vac. Sci. Technol. B 19, 2834–2837 (2001)CrossRefGoogle Scholar
  13. 4.13
    M. Ishida, J. Fujita, Y. Ochiai: Density estimation for amorphous carbon nanopillars grown by focused ion beam assisted chemical vapor deposition, J. Vac. Sci. Technol. B 20, 2784–2787 (2002)CrossRefGoogle Scholar
  14. 4.14
    T. Morita, K. Nakamatsu, K. Kanda, Y. Haruyama, K. Kondo, T. Hoshino, T. Kaito, J. Fujita, T. Ichihashi, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Nanomechanical switch fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 22, 3137–3142 (2004)CrossRefGoogle Scholar
  15. 4.15
    R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Characteristic of nano-electrostatic actuator fabricated by focused ion beam chemical vapor deposition, Jpn. J. Appl. Phys. 43, 7187–7191 (2004)CrossRefGoogle Scholar
  16. 4.16
    R. Kometani, T. Morita, K. Watanabe, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Nozzle-nanostructure fabrication on glass capillary by focused-ion-beam chemical vapor deposition and etching, Jpn. J. Appl. Phys. 42, 4107–4110 (2003)CrossRefGoogle Scholar
  17. 4.17
    R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Performance of nanomanipulator fabricated on glass capillary by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 23, 298–301 (2005)CrossRefGoogle Scholar
  18. 4.18
    R. Kometani, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Three-dimensional high-performance nano-tools fabricated using focused-ion-beam chemical vapor deposition, Nucl. Instrum. Methods. Phys. Res. B 232, 362–366 (2005)CrossRefGoogle Scholar
  19. 4.19
    K. Nakamatsu, M. Nagase, H. Namatsu, S. Matsui: Mechanical characteristics of diamond-like-carbon nanosprings fabricated by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 44, L1228–L1230 (2005)CrossRefGoogle Scholar
  20. 4.20
    T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ichihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 21, 2737–2741 (2003)CrossRefGoogle Scholar
  21. 4.21
    J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, S. Matsui: Graphitization of Fe-doped amorphous carbon pillars grown by focused ion-beam-induced chemical-vapor deposition, J. Vac. Sci. Technol. B 20, 2686–2689 (2002)CrossRefGoogle Scholar
  22. 4.22
    D. Guo, R. Kometani, S. Warisawa, S. Ishihara: Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 31, 061601 (2013)CrossRefGoogle Scholar
  23. 4.23
    R. Kometani, S. Warisawa, S. Ishihara: The 3-D nanostructure growth evaluations by the real-time current monitoring on focused-ion-beam chemical vapor deposition, Microelectron. Eng. 87, 1044–1048 (2010)CrossRefGoogle Scholar
  24. 4.24
    K. Nakamatsu, K. Yamamoto, T. Hirayama, S. Matsui: Fabrication of fine electron biprism filament by free-space-nanowiring technique of focused-ion-beam + chemical vapor deposition for accurate off-axis electron holography, Appl. Phys. Express 1, 117004 (2008)CrossRefGoogle Scholar
  25. 4.25
    R. Kometani, K. Yusa, S. Warisawa, S. Ishihara: Piezoresistive effect in the three-dimensional diamondlike carbon nanostructure fabricated by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 28, C6F38–41 (2010)CrossRefGoogle Scholar
  26. 4.26
    J. Dai, K. Onomitsu, R. Kometani, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO)6and C14H10, Jpn. J. Appl. Phys. 52, 075001 (2013)CrossRefGoogle Scholar
  27. 4.27
    J. Dai, R. Kometani, K. Onomitsu, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapor deposition, J. Micromech. Microeng. 24, 055015 (2014)CrossRefGoogle Scholar
  28. 4.28
    P. Vukusic, J.R. Sambles: Photonic structures in biology, Nature 424, 852–855 (2003)CrossRefGoogle Scholar
  29. 4.29
    K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui: Brilliant blue observation from a morpho-butterfly-scale quasi-structure, Jpn. J. Appl. Phys. 44, L48–L50 (2005)CrossRefGoogle Scholar
  30. 4.30
    A.N. Broers, W.W. Molzen, J.J. Cuomo, N.D. Wittels: Electron-beam fabrication of 80-Å metal structures, Appl. Phys. Lett. 29, 596–597 (1976)CrossRefGoogle Scholar
  31. 4.31
    S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, Jpn. J. Appl. Phys. 23, L706–L708 (1984)CrossRefGoogle Scholar
  32. 4.32
    S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, J. Vac. Sci. Technol. B 4, 299–304 (1986)CrossRefGoogle Scholar
  33. 4.33
    H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum: High-resolution electron-beam induced deposition, J. Vac. Sci. Technol. B 6, 477–481 (1988)CrossRefGoogle Scholar
  34. 4.34
    S. Matsui, T. Ichihashi, M. Mito: Electron beam induced selective etching and deposition technology, J. Vac. Sci. Technol. B 7, 1182–1190 (1989)CrossRefGoogle Scholar
  35. 4.35
    Y. Ochiai, J. Fujita, S. Matsui: Electron-beam-induced deposition of copper compound with low resistivity, J. Vac. Sci. Technol. B 14, 3887–3891 (1996)CrossRefGoogle Scholar
  36. 4.36
    I. Utke, P. Hoffmann, B. Dwir, K. Leifer, E. Kapon, P. Doppelt: Focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 18, 3168–3171 (2000)CrossRefGoogle Scholar
  37. 4.37
    H.W.P. Koops, A. Reinhardt, F. Klabunde, A. Kaya, R. Plontke: Vapor supply manifold for additive nanolithography with electron beam induced deposition, Microcircuit Eng. 57/58, 909–913 (2001)CrossRefGoogle Scholar
  38. 4.38
    U. Hübner, R. Plontke, M. Blume, A. Reinhardt, H.W.P. Koops: On-line nanolithography using electron beam-induced deposition technique, Microelectron. Eng. 57/58, 953–958 (2001)CrossRefGoogle Scholar
  39. 4.39
    H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Böttger, A. Kuligk, C. Liguda, M. Eich: Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared, Microelectron. Eng. 57/58, 995–1001 (2001)CrossRefGoogle Scholar
  40. 4.40
    F. Floreani, H.W.P. Koops, W. Elsäßer: Operation of high power field emitter fabricated with electron beam deposition and concept of a miniaturized free electron laser, Microelectron. Eng. 57/58, 1009–1016 (2001)CrossRefGoogle Scholar
  41. 4.41
    K. Mitsuishi, M. Shimojo, M. Han, K. Furuya: Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons, Appl. Phys. Lett. 83, 2064–2066 (2003)CrossRefGoogle Scholar
  42. 4.42
    M. Shimojo, M. Takeguchi, M. Tanaka, K. Mitsuishi, K. Furuya: Electron beam-induced deposition using iron carbonyl and the effects of heat treatment on nanostructure, Appl. Phys. A 79, 1869–1872 (2004)CrossRefGoogle Scholar
  43. 4.43
    M. Tanaka, M. Shimojo, M. Han, K. Mitsuishi, K. Furuya: Ultimate sized nano-dots formed by electron beam-induced deposition using an ultrahigh vacuum transmission electron microscope, Surf. Interface Anal. 37, 261–264 (2005)CrossRefGoogle Scholar
  44. 4.44
    I. Utke, V. Friedli, M. Purrucker, J. Michler: Resolution in focused electron- and ion-beam induced processing, J. Vac. Sci. Technol. B 25, 2219–2223 (2007)CrossRefGoogle Scholar
  45. 4.45
    J.D. Barry, M. Ervin, J. Molstad, A. Wickenden, T. Brintlinger, P. Hoffman, J. Melngailis: Electron beam induced deposition of low resistivity platinum from Pt(PF3)4, J. Vac. Sci. Technol. B 24, 3165–3168 (2006)CrossRefGoogle Scholar
  46. 4.46
    A. Perentes, G. Sinicco, G. Boero, B. Dwir, P. Hoffmann: Focused electron beam induced deposition of nickel, J. Vac. Sci. Technol. B 25, 2228–2232 (2007)CrossRefGoogle Scholar
  47. 4.47
    A. Botman, D.A.M. de Winter, J.J.L. Muders: Electron-beam-induced deposition of platinum at low landing energies, J. Vac. Sci. Technol. B 26, 2460–2463 (2008)CrossRefGoogle Scholar
  48. 4.48
    A. Botman, M. Hesselberth, J.J.L. Mulders: Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition, J. Vac. Sci. Technol. B 26, 2464–2467 (2008)CrossRefGoogle Scholar
  49. 4.49
    S.J. Randolph, J.D. Fowlkes, P.D. Rack: Focused, nanoscale electron-beam-induced deposition and etching, Crit. Rev. Solid State Mater. Sci. 31, 55–89 (2006)CrossRefGoogle Scholar
  50. 4.50
    W.F. von Dorp, C.W. Hagen: A critical literature review of focused electron beam induced deposition, J. Appl. Phys. 104, 081301 (2008)CrossRefGoogle Scholar
  51. 4.51
    I. Utke, P. Hoffmann, J. Melngailis: Gas-assisted focused electron beam and ion beam processing and fabrication, J. Vac. Sci. Technol. B 26, 1197–1276 (2008)CrossRefGoogle Scholar
  52. 4.52
    J. Bishop, C.J. Lobo, A. Martin, M. Ford, M. Phillips, M. Toth: Role of activated chemisorption in gas-mediated electron beam induced deposition, Phys. Rev. Lett. 109, 146103 (2012)CrossRefGoogle Scholar
  53. 4.53
    N. Silvis-Cividjian, C.W. Hagen, L.H.A. Leunissen, P. Kruit: The role of secondary electrons in electron-beam-induced deposition spacial resolution, Microelectron. Eng. 61/62, 693–699 (2002)CrossRefGoogle Scholar
  54. 4.54
    V. Friedli, I. Utke, K. Mølhave, J. Michler: Dose and energy dependence of mechanical properties of focused electron-beam induced pillar deposits from Cu(C5HF6O2)2, Nanotechnology 20, 385304 (2009)CrossRefGoogle Scholar
  55. 4.55
    R. Lavrijsen, R. Córdoba, F.J. Schoenaker, T.H. Ellis, B. Barcones, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, J.M. De Teresa, C. Magen, M.R. Ibarra, P. Trompenaars, J.J.L. Mulders: Fe:O:C grown by focused-electron-beam-induced deposition: Magnetic and electric properties, Nanotechnology 22, 025302 (2011)CrossRefGoogle Scholar
  56. 4.56
    T. Brintlinger, M.S. Fuhrer, J. Melngailis, I. Utke, T. Bret, A. Perentes, P. Hoffmann, M. Abourida, P. Doppelt: Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 23, 3174–3177 (2005)CrossRefGoogle Scholar
  57. 4.57
    S. Graells, R. Alcubilla, G. Badenes, R. Quidant: Growth of plasmonic gold nanostructures by electron beam induced deposition, Appl. Phys. Lett. 91, 121112 (2007)CrossRefGoogle Scholar
  58. 4.58
    A. Fernández-Pacheco, J.M. de Teresa, R. Cordoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn: Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition, Appl. Phys. Lett. 94, 192509 (2009)CrossRefGoogle Scholar
  59. 4.59
    J. Pablo-Navarro, C. Magén, J.M. de Teresa: Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition, Nanotechnology 27, 285302 (2016)CrossRefGoogle Scholar
  60. 4.60
    H. Acar, T. Coenen, A. Polman, L.K. Kuipers: Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition, ACS Nano 6, 8226–8232 (2012)CrossRefGoogle Scholar
  61. 4.61
    P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, G. Leuchs: Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition, Nanotechnology 27, 025705 (2016)CrossRefGoogle Scholar
  62. 4.62
    I. Utke, S. Moshkalev, P. Russel (Eds.): Nanofabrication Using Focused Ion and Electron-Beams (Oxford Univ. Press, Oxford 2012)Google Scholar
  63. 4.63
    S. Matsui, K. Mori: In situ observation on electron beam induced chemical vapor deposition by Auger electron spectroscopy, Appl. Phys. Lett. 51, 646–648 (1987)CrossRefGoogle Scholar
  64. 4.64
    S. Matsui, T. Ichihashi: In situ observation on electron-beam-induced chemical vapor deposition by transmission electron microscopy, Appl. Phys. Lett. 53, 842–844 (1988)CrossRefGoogle Scholar
  65. 4.65
    V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscunà, D. Sanvitto, A. Passaseo: Three-dimensional nanohelices for chiral photonics, Appl. Phys. A 122, 280 (2016)CrossRefGoogle Scholar
  66. 4.66
    S. Juodkazis, V. Mizeikis, H. Misawa: Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications, J Appl. Phys. 106, 051101 (2009)CrossRefGoogle Scholar
  67. 4.67
    K. Sugioka, Y. Cheng: Ultrafast lasers-reliable tools for advanced materials processing, Light Sci. Appl. 3, e149 (2014)CrossRefGoogle Scholar
  68. 4.68
    J.F. Herbstman, A.J. Hunt: High-aspect ratio nanochannel formation by single femtosecond laser pulses, Opt. Express 18, 16840–16848 (2010)CrossRefGoogle Scholar
  69. 4.69
    E. Brasselet, M. Malinauskas, A. Zukauskas, S. Juodkazis: Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum, Appl. Phys. Lett. 97, 211108 (2010)CrossRefGoogle Scholar
  70. 4.70
    S. Maruo, K. Ikuta, H. Korogi: Submicron manipulation tools driven by light in a liquid, Appl. Phys. Lett. 82, 133 (2003)CrossRefGoogle Scholar
  71. 4.71
    Y.Y. Cao, N. Takeyasu, T. Tanaka, X.M. Duan, S. Kawata: 3-D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction, Small 5, 1144–1148 (2009)Google Scholar
  72. 4.72
    Y.J. Yan, M.I. Rashad, E.J. Teo, H. Tanoto, J.H. Teng, A.A. Bettiol: Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications, Opt. Mater. Express 1, 1548–1554 (2011)CrossRefGoogle Scholar
  73. 4.73
    D.X. Liu, Y.L. Sun, W.F. Dong, R.Z. Yang, Q.D. Chen, H.B. Sun: Dynamic laser prototyping for biomimetic nanofabrication, Laser Photonics Rev. 8, 882–888 (2014)CrossRefGoogle Scholar
  74. 4.74
    T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener: Three-dimensional invisibility cloak at optical wavelengths, Science 328, 337–339 (2010)CrossRefGoogle Scholar
  75. 4.75
    H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)CrossRefGoogle Scholar
  76. 4.76
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J.Q. Qin, H. Rockel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry: Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature 398, 51–54 (1999)CrossRefGoogle Scholar
  77. 4.77
    K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa: Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing, Adv. Mater. 17, 541–545 (2005)CrossRefGoogle Scholar
  78. 4.78
    K.K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa: Spiral three-dimensional photonic crystals for telecommunications spectral range, Appl. Phys. A 82, 683–688 (2006)CrossRefGoogle Scholar
  79. 4.79
    A. Ovsianikov, S.Z. Xiao, M. Farsari, M. Vamvakaki, C. Fotakis, B.N. Chichkov: Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials, Opt. Express 17, 2143–2148 (2009)CrossRefGoogle Scholar
  80. 4.80
    S.R. Kennedy, M.J. Brett, O. Toader, S. John: Fabrication of tetragonal square spiral photonic crystals, Nano Lett. 2, 59–62 (2002)CrossRefGoogle Scholar
  81. 4.81
    Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, H. Misawa: Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses, J. Micromech. Microeng. 20, 035004 (2010)CrossRefGoogle Scholar
  82. 4.82
    K.K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, S. John: Templating and replication of spiral photonic crystals for silicon photonics, IEEE J. Sel. Top. Quant. 14, 1064–1073 (2008)CrossRefGoogle Scholar
  83. 4.83
    Q. Sun, K. Ueno, H. Misawa: In situ investigation of the shrinkage of photopolymerized micro–nanostructures: The effect of the drying process, Opt. Lett. 37, 710–712 (2012)CrossRefGoogle Scholar
  84. 4.84
    V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, H. Misawa: Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region, Opt. Express 15, 8454–8464 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shinji Matsui
    • 1
  • Hiroaki Misawa
    • 2
  • Quan Sun
    • 3
  1. 1.Laboratory of Advanced Science & Technology for IndustryUniversity of HyogoHyogoJapan
  2. 2.Research Institute of Electronic ScienceHokkaido University SapporoJapan
  3. 3.Research Institute of Electronic ScienceHokkaido University SapporoJapan

Personalised recommendations