Advertisement

Superresolution Microscopy

  • Tom D. Milster
Part of the Springer Handbooks book series (SHB)

Abstract

There are many types of optical microscopy systems that produce superresolution. This discussion centers on optical microscopy techniques that have the potential to extract features from objects that are one the scale of 100 nm or less, which is much smaller than what can be achieved with a classical optical microscope.

In order to achieve resolution on the order of 100 nm with visible-light photons, more information must be obtained from the system than a single image using classical illumination can produce. In some cases, the extra information is in the form of a series of images with a customized illumination pattern. In other systems, the object displays response characteristics that effectively reduce the size of the scanning laser spot used to illuminate it. In yet other systems, light is forced through a nanosized aperture and then scanned over the object.

None of the systems described in this chapter actually change the characteristics or physics of the optical systems used to collect photons. Instead, classical optical systems are cleverly combined with advanced illumination techniques and postprocessing that produce superresolution images.

In the introduction, basic concepts regarding classical resolution are reviewed, and terms are defined that are important with respect to understanding how superresolution microscopy works. Subsequent sections describe superresolution techniques, including scanning aperture techniques, 4-Pi microscopy, enhancement/depletion techniques, photoactivated localization, lattice light-sheet microscopy, and structured illumination. A short comparison of techniques for live-cell imaging is also provided. Although examples of the techniques are given, this chapter is not intended to be a state-of-the-art review inclusive of all variations. Instead, the intent is to provide a basic understanding of the primary classes of superresolution microscopy techniques.

It is notable that work in this area has generated several recent Nobel prizes, because of the importance to science of being able to resolve structures and physiology at the nanoscale [26.1].

References

  1. 26.1
    Nobel Media AB: The Nobel Prize in Chemistry 2014. http://www.nobelprize.org/nobel_prizes/ chemistry/laureates/2014/ (2014)
  2. 26.2
    J.W. Goodman: Introduction to Fourier optics (Roberts, Englewood 2005)Google Scholar
  3. 26.3
    C. Genet, T.W. Ebbesen: Light in tiny holes, Nature 445, 39–46 (2007)CrossRefGoogle Scholar
  4. 26.4
    B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J. Martin, D.W. Pohl: Scanning near-field optical microscopy with aperture probes: Fundamentals and applications, J. Chem. Phys. 112, 7761–7774 (2000)CrossRefGoogle Scholar
  5. 26.5
    L. Novotny, B. Hecht: Principles of Nano-Optics (Cambridge University Press, Cambridge 2012)CrossRefGoogle Scholar
  6. 26.6
    Z.H. Kim, S.R. Leone: High-resolution apertureless near-field optical imaging using gold nanosphere probes, J. Phys. Chem. B 110, 19804–19809 (2006)CrossRefGoogle Scholar
  7. 26.7
    F.F. Froehlich, T.D. Milster: Detection of probe dither motion in near-field scanning optical microscopy, Appl. Opt. 34, 7273–7279 (1995)CrossRefGoogle Scholar
  8. 26.8
    E. Betzig: Principles and applications of near-field scanning optical microscopy (NSOM). In: Near Field Optics, NATO ASI Series, Vol. 242, ed. by D.W. Pohl, D. Courjon (Springer, Dordrecht 1993) pp. 7–15CrossRefGoogle Scholar
  9. 26.9
    S. Hell, E. Stelzer: Properties of a 4Pi confocal fluorescence microscope, J. Opt. Soc. Am. A 9, 2159–2166 (1992)CrossRefGoogle Scholar
  10. 26.10
    J. Bewersdorf, A. Egner, S.W. Hell: 4Pi microscopy. In: Handbook of Biological Confocal Microscopy, 3rd edn., ed. by J.B. Pawley (Springer, New York 2006) pp. 561–570CrossRefGoogle Scholar
  11. 26.11
    S. Hell, H. Stelzer: Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Optics Commun 93, 277–282 (1992)CrossRefGoogle Scholar
  12. 26.12
    S.W. Hell, M. Schrader, H.T.M. Van Der Voort: Far-field fluorescence microscopy with three-dimensional resolution in the 100-nm range, J. Microsc. 187, 1–7 (1997)CrossRefGoogle Scholar
  13. 26.13
    S.W. Hell, J. Wichmann: Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19, 780–782 (1994)CrossRefGoogle Scholar
  14. 26.14
    S.W. Hell: Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering. In: Topics in Fluorescence Spectroscopy, ed. by J.R. Lakowicz (Springer, New York 2002) pp. 361–426CrossRefGoogle Scholar
  15. 26.15
    V. Westphal, L. Kastrup, S.W. Hell: Lateral resolution of 28 nm (λ ∕ 25) in far-field fluorescence microscopy, Appl. Phys. B 77, 377–380 (2003)CrossRefGoogle Scholar
  16. 26.16
    B. Harke, J. Keller, C.K. Ullal, V. Westphal, A. Sch, S.W. Hell: Resolution scaling in STED microscopy, Opt. Express 16, 4154–4162 (2008)CrossRefGoogle Scholar
  17. 26.17
    S.W. Hell: Toward fluorescence nanoscopy, Nat. Biotechnol. 21, 1347–1355 (2003)CrossRefGoogle Scholar
  18. 26.18
    M. Hofmann, C. Eggeling, S. Jakobs, S.W. Hell: Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins, Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005)CrossRefGoogle Scholar
  19. 26.19
    S.W. Hell, S. Jakobs, L. Kastrup: Imaging and writing at the nanoscale with focused visible light through saturable optical transitions, Appl. Phys. A 77, 859–860 (2003)CrossRefGoogle Scholar
  20. 26.20
    K.I. Willig, B. Harke, R. Medda, S.W. Hell: STED microscopy with continuous wave beams, Nat. Methods 4, 915–918 (2007)CrossRefGoogle Scholar
  21. 26.21
    G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, S.W. Hell: Sharper low-power STED nanoscopy by time gating, Nat. Methods 8, 571–573 (2011)CrossRefGoogle Scholar
  22. 26.22
    R.E. Thompson, D.R. Larson, W.W. Webb: Precise nanometer localization analysis for individual fluorescent probes, Biophys. J. 82, 2775–2783 (2002)CrossRefGoogle Scholar
  23. 26.23
    H. Shroff, C.G. Galbraith, J.A. Galbraith, E. Betzig: Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics, Nat. Methods 5, 417–423 (2008)CrossRefGoogle Scholar
  24. 26.24
    D.M. Owen, C. Rentero, J. Rossy, A. Magenau, D. Williamson, M. Rodriguez, K. Gaus: PALM imaging and cluster analysis of protein heterogeneity at the cell surface, J. Biophotonics 3, 446–454 (2010)CrossRefGoogle Scholar
  25. 26.25
    E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess: Imaging intracellular fluorescent proteins at nanometer resolution, Science 313, 1642–1645 (2006)CrossRefGoogle Scholar
  26. 26.26
    S.T. Hess, T.P. Girirajan, M.D. Mason: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J. 91, 4258–4272 (2006)CrossRefGoogle Scholar
  27. 26.27
    S.T. Hess, T.J. Gould, M. Gunewardene, J. Bewersdorf, M.D. Mason: Ultrahigh resolution imaging of biomolecules by fluorescence photoactivation localization microscopy. In: Micro and Nano Technologies in Bioanalysis: Methods and Protocols, ed. by R.S. By, J.W.L. Foote (Springer, New York 2009) pp. 483–522CrossRefGoogle Scholar
  28. 26.28
    S. Manley, J.M. Gillette, G.H. Patterson, H. Shroff, H.F. Hess, E. Betzig, J. Lippincott-Schwartz: High-density mapping of single-molecule trajectories with photoactivated localization microscopy, Nat. Methods 5, 155–157 (2008)CrossRefGoogle Scholar
  29. 26.29
    S. Quirin, S.R.P. Pavani, R. Piestun: Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions, Proc. Natl. Acad. Sci. 109, 675–679 (2012)CrossRefGoogle Scholar
  30. 26.30
    M.J. Rust, M. Bates, X. Zhuang: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3, 793–796 (2006)CrossRefGoogle Scholar
  31. 26.31
    S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, M. Sauer: Direct stochastic optical reconstruction microscopy with standard fluorescent probes, Nat. Protoc. 6, 991–1009 (2011)CrossRefGoogle Scholar
  32. 26.32
    T. Dertinger, R. Colyer, G. Iyer, S. Weiss, J. Enderlein: Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI), Proc. Natl. Acad. Sci. 106, 22287–22292 (2009)CrossRefGoogle Scholar
  33. 26.33
    M.G.L. Gustafsson: Surpassing the resolution limit by a factor of two using structured illumination microscopy, J. Microsc. 198, 82–87 (2000)CrossRefGoogle Scholar
  34. 26.34
    M.G.L. Gustafsson: Nonlinear structured illumination microscopy: Wide field fluorescence imaging with theoretically unlimited resolution, Proc. Natl. Acad. Sci. 102, 13081–13086 (2005)CrossRefGoogle Scholar
  35. 26.35
    Y.S. Hu, M. Zimmerley, Y. Li, R. Watters, H. Cang: Single-molecule super-resolution light-sheet microscopy, ChemPhysChem 15, 577–586 (2014)CrossRefGoogle Scholar
  36. 26.36
    J. Huisken, D. Stainier: Selective plane illumination microscopy techniques in developmental biology, Development 136, 1963–1975 (2009)CrossRefGoogle Scholar
  37. 26.37
    H. Siedentopf, R. Zsigmondy: Über Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser, Ann. Phys. 1, 1–39 (1903)Google Scholar
  38. 26.38
    L. Gao, L. Shatio, B. Chen, E. Betzig: 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy, Nat. Protoc. 9, 1083–1101 (2014)CrossRefGoogle Scholar
  39. 26.39
    P. Santi: Light sheet fluorescence microscopy: A review, J. Histochem. Cytochem. 59, 129–138 (2011)CrossRefGoogle Scholar
  40. 26.40
    P.J. Keller, H.U. Dodt: Light sheet microscopy of living or cleared specimens, Curr. Opin. Neurobiol. 22, 138–143 (2012)CrossRefGoogle Scholar
  41. 26.41
    E. Betzig: Nobel Lecture: Single Molecules, Cells, and Super-Resolution Optics, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/betzig-lecture.html (2016)
  42. 26.42
    L. Schermelleh, R. Heintzmann, H. Leonhardt: A guide to super-resolution fluorescence microscopy, J. Cell Biol. 190, 165–175 (2010)CrossRefGoogle Scholar
  43. 26.43
    B. Huang, M. Bates, X. Zhuang: Super resolution fluorescence microscopy, Annu. Rev. Biochem. 78, 993–1016 (2009)CrossRefGoogle Scholar
  44. 26.44
    B.R. Long, D.C. Robinson, H. Zhong: Subdiffractive microscopy: Techniques, applications, and challenges, Wiley Interdiscip. Rev. Syst. Biol. Med. 6, 151–168 (2014)CrossRefGoogle Scholar
  45. 26.45
    H. Shroff, S.T. Hess, E. Betzig, H.F. Hess, G.H. Patterson, J. Lippincott-Schwartz, M. W. Davidson: Practical Aspect of PALM Imaging, http://zeiss-campus.magnet.fsu.edu/articles/superresolution/palm/practicalaspects.html (2016)
  46. 26.46
    J.S. Silfies, S.A. Schwartz, M.W. Davidson: Single-Molecule Super-Resolution Imaging, http://www.microscopyu.com/techniques/super-resolution/single-molecule-super-resolution-imaging (2016)

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Tom D. Milster
    • 1
  1. 1.College of Optical SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations