Nano-Particles for Biomedical Applications

  • Paolo Decuzzi
  • Alessandro Coclite
  • Aeju Lee
  • Anna Lisa Palange
  • Daniele Di Mascolo
  • Ciro Chiappini
  • Hélder A. Santos
  • Maria Laura Coluccio
  • Gerardo Perozziello
  • Patrizio Candeloro
  • Enzo Di Fabrizio
  • Francesco Gentile
Part of the Springer Handbooks book series (SHB)


Nanoparticles (NP s) are extremely small particulates with an average size that ranges from a micron or less to a few nanometers. The large majority of NPs necessitate nanotechnology methods for their production. The size of NPs may vary over a significant range, which underlies their scientific potential in that NPs may help cross the bridge between bulk materials and molecular structures. More importantly, NPs are (nano)tech products and thus, in contrast to natural systems, they can be designed and engineered. On directly interacting with cells, including the structures of cells, their machinery and their waste products, NPs represent an unprecedented tool for addressing specific biological problems. In this chapter, we will briefly review some recent advances in nanoparticle research for biomedical applications, ranging from mesoporous silicon particles to gold and silver nanoparticles and polymeric nanocarriers for therapeutic, diagnosis, or theranostic (therapeutics + diagnosis) applications. We will offer a description of how, at the current state of the art, similar nanomedicine platforms are realized.



Dr. Hélder A. Santos acknowledges the Academy of Finland (project numbers 252215 and 281300), the University of Helsinki and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement number 310892 for financial support. Dr. Dongfei Liu and Dr. Bárbara Herranz Blanco (Division of Pharmaceutical Chemistry and Technology) are also acknowledged for their discussions and for providing some of the material in the microfluidics section. Professor Francesco Gentile acknowledges the Italian Minister of Health (Project number GR-2010-2320665).


  1. 21.1
    W.R.S. Sanhai, J.H. Sakamoto, R. Canady, M. Ferrari: Seven challenges for nanomedicine, Nat. Nanotechnol. 3, 242–244 (2008)Google Scholar
  2. 21.2
    O. Salata: Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. (2004) doi: 10.1186/1477-3155-2-3
  3. 21.3
    K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs: Nanomedicine–challenge and perspectives, Angewandte Chemie Int. Edn. 48(5), 872–897 (2009)Google Scholar
  4. 21.4
    R. Petros, J. DeSimone: Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov. 9(8), 615–627 (2010)Google Scholar
  5. 21.5
    M. Ferrari: Cancer nanotechnology: Opportunities and challenges, Nat. Rev. Cancer 5, 161–171 (2005)Google Scholar
  6. 21.6
    W.M. Haynes (Ed.): CRC Handbook of Chemistry and Physics (CRC, Boulder 1998)Google Scholar
  7. 21.7
    Z. Zhang, M.A. Horsch, M.H. Lamm, S.C. Glotzer: Tethered nano building blocks: Toward a conceptual framework for nanoparticle self-assembly, Nano Lett. 3(10), 1341–1346 (2003)Google Scholar
  8. 21.8
    P.F. Damasceno, M. Engel, S.C. Glotzer: Predictive self-assembly of polyhedra into complex structures, Science 337, 453 (2012)Google Scholar
  9. 21.9
    X. Lu, M. Rycenga, S. Skrabalak, B. Wiley, Y. Xia: Chemical synthesis of novel plasmonic nanoparticles, Ann. Rev. Phys. Chem. 60, 167–192 (2009)Google Scholar
  10. 21.10
    M.G. Guzmán, J. Dille, S. Godet: Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity, Int. J. Chem. Biomol. Eng. 2(3), 104–111 (2009)Google Scholar
  11. 21.11
    U. Mohanty: Electrodeposition: A versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals, J. Appl. Electrochem. 41, 257–270 (2011)Google Scholar
  12. 21.12
    N. German, A. Ramanavicius, A. Ramanavicien: Electrochemical deposition of gold nanoparticles on graphite rod for glucose biosensing, Sens. Actuators B 203, 25–34 (2014)Google Scholar
  13. 21.13
    J. Key, A.L. Palange, F. Gentile, S. Aryal, C. Stigliano, D. Di Mascolo, E. De Rosa, M. Cho, Y. Lee, J. Singh, P. Decuzzi: Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors, ACS Nano 9(12), 11628–11641 (2015)Google Scholar
  14. 21.14
    C. Daraio, S. Jin: Synthesis and patterning methods for nanostructures useful for biological applications. In: Nanotechnology for Biology and Medicine at the Building Block Level, ed. by G.A. Silva, V. Parpura (Springer, New York 2012)Google Scholar
  15. 21.15
    T.D.H. Le, W. Bonani, G. Speranza, V. Sglavo, R. Ceccato, D. Maniglio, A. Motta, C. Migliaresi: Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering, Mater. Sci. Eng. C 59, 471–479 (2016)Google Scholar
  16. 21.16
    A. Jantschke, C. Fischer, R. Hensel, H.G. Braun, E. Brunner: Directed assembly of nanoparticles to isolated diatom valves using the non-wetting characteristics after pyrolysis, Nanoscale 6, 11637–11645 (2014)Google Scholar
  17. 21.17
    S. Schlücker: Surface-enhanced Raman spectroscopy: Concepts and chemical applications, Angew. Chem. Int. Edn. 53(19), 4756–4795 (2014)Google Scholar
  18. 21.18
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld: Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78, 1667–1670 (1997)Google Scholar
  19. 21.19
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld: Surface-enhanced Raman scattering and biophysics, J. Phys. Condens. Matter 14, R597–R624 (2002)Google Scholar
  20. 21.20
    J. Kneipp, H. Kneipp, K. Kneipp: SERS-a single-molecule and nanoscale tool for bioanalytics, Chem. Soc. Rev. 37(5), 1052–1060 (2008)Google Scholar
  21. 21.21
    S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic, Y. Román-Leshkov: Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts, Science 352(6288), 974–978 (2016)Google Scholar
  22. 21.22
    O. Govorov, H.H. Richardson: Generating heat with metal nanoparticles, Nano Today 2, 30–38 (2007)Google Scholar
  23. 21.23
    G. Baffou, R. Quidan: Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat, Laser Photonics Rev. 7(2), 171–187 (2013)Google Scholar
  24. 21.24
    D. Maharaj, B. Bhushan: Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation, J. Nanotechnol. 5, 822–836 (2014)Google Scholar
  25. 21.25
    D. Maharaj, B. Bhushan: Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and Carbon nanohorns, Sci. Rep. 5(8539), 1–9 (2015)Google Scholar
  26. 21.26
    D. Chen, X. Qiao, X. Qiu, J. Chen: Synthesis and electrical properties of uniform silver nanoparticles for electronic applications, J. Mater. Sci. 44(4), 1076 (2009)Google Scholar
  27. 21.27
    A.H. Alshehri, M. Jakubowska, A. Młożniak, M. Horaczek, D. Rudka, C. Free, J.D. Carey: Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications, ACS Appl. Mater. Interfaces 4(12), 7007–7010 (2012)Google Scholar
  28. 21.28
    A. Akbarzadeh, M. Samiei, S. Davaran: Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett. 7(1), 144 (2012)Google Scholar
  29. 21.29
    B. Nawrot, E. Gaggelli: Understanding the chemical mechanisms of life, Nat. Chem. Biol. 3, 745–749 (2007)Google Scholar
  30. 21.30
    G.M. Whitesides: The ‘right’ size in nanobiotechnology, Nat. Biotechnol. 21, 1161–1165 (2003)Google Scholar
  31. 21.31
    W.F. Marshall, K.D. Young, M. Swaffer, E. Wood, P. Nurse, A. Kimura, J. Frankel, J. Wallingford, V. Walbot, X. Qu, A.H. Roeder: What determines cell size?, BMC Biology 10(101), 1–22 (2012) doi: 10.1186/1741-7007-10-101 CrossRefGoogle Scholar
  32. 21.32
    E. Hafen, H. Stocker: How are the sizes of cells, organs, and bodies controlled?, PLoS. Biol. 1(3), e86 (2003)Google Scholar
  33. 21.33
    Y. Fung: Biomechanics, Mechanical Properties of Living Tissues (Springer, New York 1993)Google Scholar
  34. 21.34
    M. Elsabahy, K.L. Wooley: Design of polymeric nanoparticles for biomedical delivery applications, Chem. Soc. Rev. 41, 2545–2561 (2012)Google Scholar
  35. 21.35
    E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M. Ming-Cheng Cheng, P. Decuzzi, J.M. Tour, F. Robertson, M. Ferrari: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications, Nat. Nanotechnol. 3, 151–157 (2008)Google Scholar
  36. 21.36
    E. Blanco, H. Shen, M. Ferrari: Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat. Biotechnol. 33, 941–951 (2015)Google Scholar
  37. 21.37
    A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos, J.O. Martinez, B.S. Brown, S.Z. Khaled, I.K. Yazdi, M.V. Enzo, L. Isenhart, M. Ferrari, E. Tasciotti: Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions, Nat. Nanotechnol. 8, 61–68 (2013)Google Scholar
  38. 21.38
    Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink: Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev. 41, 2590–2605 (2012)Google Scholar
  39. 21.39
    J.S. Ananta, B. Godin, R. Sethi, L. Moriggi, X. Liu, R.E. Serda, R. Krishnamurthy, R. Muthupillai, R.D. Bolskar, L. Helm, M. Ferrari, L.J. Wilson, P. Decuzzi: Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast, Nat. Nanotechnol. 5, 815–821 (2010)Google Scholar
  40. 21.40
    L. Dykmana, N. Khlebtsov: Gold nanoparticles in biomedical applications: Recent advances and perspectives, Chem. Soc. Rev. 41, 2256–2282 (2012)Google Scholar
  41. 21.41
    E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed: The golden age: Gold nanoparticles for biomedicine, Chem. Soc. Rev. 41, 2740–2779 (2012)Google Scholar
  42. 21.42
    Q.H. Tran, V.Q.A.-T. Le Nguyen: Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013)Google Scholar
  43. 21.43
    S. Prabhu, E.K. Poulose: Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett. 2(32), 1–10 (2012)Google Scholar
  44. 21.44
    H.T. Nasrabadi, E. Abbasi, S. Davaran, M. Kouhi, A. Akbarzadeh: Bimetallic nanoparticles: Preparation, properties, and biomedical applications, Artif. Cells Nanomed. Biotechnol. 44, 376–380 (2016)Google Scholar
  45. 21.45
    C. Xu, S. Sun: New forms of superparamagnetic nanoparticles for biomedical applications, Adv. Drug Deliv. Rev. 65, 732–743 (2013)Google Scholar
  46. 21.46
    A.K. Gupta, M. Gupta: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26, 3995–4021 (2005)Google Scholar
  47. 21.47
    J.H. Lee, J.-T. Jang, J.-S. Choi, S.H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K.I. Park, J. Cheon: Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6, 418–422 (2011)Google Scholar
  48. 21.48
    H.L. Ferrand, S. Bolisetty, A.F. Demirors, R. Libanori, A.R. Studart, R. Mezzenga: Magnetic assembly of transparent and conducting graphene-based functional composites, Nat. Commun. 7, 12078 (2016)Google Scholar
  49. 21.49
    L.Y. Chou, K. Zagorovsky, W.C. Chan: DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination, Nat. Nanotechnol. 9, 148–155 (2014)Google Scholar
  50. 21.50
    F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A.L. Breton, V. Préat: PLGA-based nanoparticles: An overview of biomedical applications, J. Control. Release 161, 505–522 (2012)Google Scholar
  51. 21.51
    D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer: Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol. 2(12), 751–760 (2007) doi: 10.1038/nnano.2007.387 CrossRefGoogle Scholar
  52. 21.52
    C. Antoniades, C. Psarros, D. Tousoulis, C. Bakogiannis, C. Shirodaria, C. Stefanadis: Nanoparticles: A promising therapeutic approach in atherosclerosis, Curr. Drug Deliv. 7(4), 303–311 (2010)Google Scholar
  53. 21.53
    A.C. Anselmo, S. Mitragotri: An overview of clinical and commercial impact of drug delivery systems, J. Control. Release 190, 15–28 (2014) doi: 10.1016/j.jconrel.2014.03.053 CrossRefGoogle Scholar
  54. 21.54
    A.L. van de Ven, P. Kim, O.A.H. Haley, J.R. Fakhoury, G. Adriani, J. Schmulen, P. Moloney, F. Hussain, M. Ferrari, X. Liu, S.-H. Yun, P. Decuzzi: Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution, J. Control. Release 158(1), 148–155 (2012) doi: 10.1016/j.jconrel.2011.10.021 CrossRefGoogle Scholar
  55. 21.55
    M. Nabil, P. Decuzzi, P. Zunino: Modelling mass and heat transfer in nano-based cancer hyperthermia, R. Soc. Open Sci. 2(10), 150447 (2015) doi: 10.1098/rsos.150447 CrossRefGoogle Scholar
  56. 21.56
    R.E. Serda, S. Ferrati, B. Godin, E. Tasciotti, X. Liu, M. Ferrari: Mitotic trafficking of silicon microparticles, Nanoscale 1(2), 250–259 (2009) doi: 10.1039/B9NR00138G CrossRefGoogle Scholar
  57. 21.57
    A.C. Anselmo, M. Zhang, S. Kumar, D.R. Vogus, S. Menegatti, M.E. Helgeson, S. Mitragotri: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting, ACS Nano 9(3), 3169–3177 (2015) doi: 10.1021/acsnano.5b00147 CrossRefGoogle Scholar
  58. 21.58
    D.D. Joseph, D. Ocando: Slip velocity and lift, J. Fluid Mech. 454, 263–286 (2002) doi: 10.1017/S0022112001007145 MathSciNetCrossRefzbMATHGoogle Scholar
  59. 21.59
    T.R. Lee, M. Choi, A.M. Kopacz, S.H. Yun, W.K. Liu, P. Decuzzi: On the near-wall accumulation of injectable particles in the microcirculation: Smaller is not better, Sci. Rep. 3, 2079 (2013) doi: 10.1038/srep02079 CrossRefGoogle Scholar
  60. 21.60
    T.R. Lee, M.S. Greene, Z. Jiang, A.M. Kopacz, P. Decuzzi, W. Chen, W.K. Liu: Quantifying uncertainties in the microvascular transport of nanoparticles, Biomech. Model. Mechanobiol. 13(3), 515–526 (2014) doi: 10.1007/s10237-013-0513-0 CrossRefGoogle Scholar
  61. 21.61
    M.D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, M. Napolitano: An immersed boundary method for compressible flows using local grid refinement, J. Comput. Phys. 225(2), 2098–2117 (2007)MathSciNetzbMATHGoogle Scholar
  62. 21.62
    S.S. Hossain, T.J. Hughes, P. Decuzzi: Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree, Biomech. Model. Mechanobiol. 13(3), 585–597 (2014) doi: 10.1007/s10237-013-0520-1 CrossRefGoogle Scholar
  63. 21.63
    S.S. Hossain, Y. Zhang, X. Liang, F. Hussain, M. Ferrari, T.J. Hughes, P. Decuzzi: In silico vascular modeling for personalized nanoparticle delivery, Nanomedicine 8(3), 343–357 (2013) doi: 10.2217/nnm.12.124 CrossRefGoogle Scholar
  64. 21.64
    A.J.C. Ladd: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271, 285–309 (1994)MathSciNetzbMATHGoogle Scholar
  65. 21.65
    A.J.C. Ladd: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech. 271, 311–339 (1994)MathSciNetzbMATHGoogle Scholar
  66. 21.66
    S. Succi: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford University Press, Oxford 2001)zbMATHGoogle Scholar
  67. 21.67
    C. Sun, C. Migliorini, L.L. Munn: Red blood cells initiate leukocyte rolling in postcapillary expansions: A lattice Boltzmann analysis, Biophys. J. 85(1), 208–222 (2003) doi: 10.1016/S0006-3495(03)74467-1 CrossRefGoogle Scholar
  68. 21.68
    A. Coclite, M.D. de Tullio, G. Pascazio, P. Decuzzi: A combined lattice Boltzmann and immersed boundary approach for predicting the vascular transport of differently shaped particles, Comput. Fluids 136, 260–271 (2016)MathSciNetzbMATHGoogle Scholar
  69. 21.69
    H. Maeda: Macromolecular therapeutics in cancer treatment: The EPR effect and beyond, J. Control. Release 164(2), 138–144 (2012) doi: 10.1016/j.jconrel.2012.04.038 CrossRefGoogle Scholar
  70. 21.70
    R.K. Jain, T. Stylianopoulos: Delivering nanomedicine to solid tumors, Nat. Rev. Clin. Oncol. 7(11), 653–664 (2010) doi: 10.1038/nrclinonc.2010.139 CrossRefGoogle Scholar
  71. 21.71
    C. Stigliano, J. Key, M. Ramirez, S. Aryal, P. Decuzzi: Radiolabeled polymeric nanoconstructs loaded with docetaxel and curcumin for cancer combinatorial therapy and nuclear imaging, Adv. Funct. Mater. 25(22), 3371–3379 (2015) doi: 10.1002/adfm.201500627 CrossRefGoogle Scholar
  72. 21.72
    A. Lee, D. Di Mascolo, M. Francardi, F. Piccardi, T. Bandiera, P. Decuzzi: Spherical polymeric nanoconstructs for combined chemotherapeutic and anti-inflammatory therapies, Nanomedicine 12(7), 2139–2147 (2016) doi: 10.1016/j.nano.2016.05.012 CrossRefGoogle Scholar
  73. 21.73
    S.Y. Lee, M. Ferrari, P. Decuzzi: Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows, Nanotechnology 20(49), 495101 (2009) doi: 10.1088/0957-4484/20/49/495101 CrossRefGoogle Scholar
  74. 21.74
    P. Decuzzi, B. Godin, T. Tanaka, S.Y. Lee, C. Chiappini, X. Liu, M. Ferrari: Size and shape effects in the biodistribution of intravascularly injected particles, J. Control. Release 141(3), 320–327 (2010) doi: 10.1016/j.jconrel.2009.10.014 CrossRefGoogle Scholar
  75. 21.75
    P. Decuzzi, M. Ferrari: The adhesive strength of non-spherical particles mediated by specific interactions, Biomaterials 27(30), 5307–5314 (2006) doi: 10.1016/j.biomaterials.2006.05.024 CrossRefGoogle Scholar
  76. 21.76
    P. Decuzzi, M. Ferrari: Design maps for nanoparticles targeting the diseased microvasculature, Biomaterials 29(3), 377–384 (2008) doi: 10.1016/j.biomaterials.2007.09.025 CrossRefGoogle Scholar
  77. 21.77
    L.T. Canham: Bioactive silicon structure fabrication through nanoetching techniques, Adv. Mater. 7(12), 1033–1037 (1995) doi: 10.1002/adma.19950071215 CrossRefGoogle Scholar
  78. 21.78
    H. Ouyang, M. Christophersen, P.M. Fauchet: Enhanced control of porous silicon morphology from macropore to mesopore formation, Phys. Stat. Sol. A 202(8), 1396–1401 (2005) doi: 10.1002/pssa.200461112 CrossRefGoogle Scholar
  79. 21.79
    L. Xiao, L. Gu, S.B. Howell, M.J. Sailor: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells, ACS Nano 5, 3651–3659 (2011)Google Scholar
  80. 21.80
    C. Chiappini, X. Liu, J.R. Fakhoury, M. Ferrari: Biodegradable porous silicon barcode nanowires with defined geometry, Adv. Funct. Mater. 20(14), 2231–2239 (2010) doi: 10.1002/adfm.201000360 CrossRefGoogle Scholar
  81. 21.81
    C. Chiappini, E. De Rosa, J.O. Martinez, X. Liu, J. Steele, M.M. Stevens, E. Tasciotti: Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization, Nat. Mater. 14(5), 532–539 (2015) doi: 10.1038/nmat4249 CrossRefGoogle Scholar
  82. 21.82
    X.G. Zhang: Morphology and formation mechanisms of porous silicon, J. Electrochem. Soc. 151(1), C69–C80 (2004) doi: 10.1149/1.1632477 CrossRefGoogle Scholar
  83. 21.83
    F. Dai, J. Zai, R. Yi, M.L. Gordin, H. Sohn, S. Chen, D. Wang: Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance, Nat. Comm. 5, 1–11 (2014) doi: 10.1038/ncomms4605 CrossRefGoogle Scholar
  84. 21.84
    L. Batchelor, A. Loni, L.T. Canham, M. Hasan, J.L. Coffer: Manufacture of mesoporous silicon from living plants and agricultural waste: An environmentally friendly and scalable process, Silicon 4(4), 259–266 (2012) doi: 10.1007/s12633-012-9129-8 CrossRefGoogle Scholar
  85. 21.85
    M.J. Sailor: Fundamentals of porous silicon preparation. In: Porous Silicon in Practice (Wiley-VCH, Weinheim 2012) pp. 1–42Google Scholar
  86. 21.86
    X. Li, P.W. Bohn: Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Appl. Phys. Lett. 77(16), 2572–2574 (2000) doi: 10.1063/1.1319191 CrossRefGoogle Scholar
  87. 21.87
    S.F. Chuang, S.D. Collins, R.L. Smith: Preferential propagation of pores during the formation of porous silicon: A transmission electron microscopy study, Appl. Phys. Lett. 55(7), 675 (1989) doi: 10.1063/1.101819 CrossRefGoogle Scholar
  88. 21.88
    H. Foll, M. Christophersen, J. Carstensen, G. Hasse: Formation and application of porous silicon, Mater. Sci. Eng. 39, 93–141 (2002)Google Scholar
  89. 21.89
    L.T. Canham, L. Canham (Eds.): Handbook of Porous Silicon (Springer, Cham 2014)Google Scholar
  90. 21.90
    M.G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiß, P. Grosse: Dielectric filters made of PS: Advanced performance by oxidation and new layer structures, Thin Sol. Films 297(1/2), 237–240 (1997) doi: 10.1016/S0040-6090(96)09361-3 CrossRefGoogle Scholar
  91. 21.91
    F. Cunin, T.A. Schmedake, J.R. Link, Y.Y. Li, J. Koh, S.N. Bhatia, M.J. Sailor: Biomolecular screening with encoded porous-silicon photonic crystals, Nat. Mater. 1(1), 39–41 (2002) doi: 10.1038/nmat702 CrossRefGoogle Scholar
  92. 21.92
    J. Salonen, V.P. Lehto, E. Laine: Thermal oxidation of free-standing porous silicon films, Appl. Phys. Lett. 70(5), 637–639 (1997) doi: 10.1063/1.118294 CrossRefGoogle Scholar
  93. 21.93
    T.A. Schmedake, F. Cunin, J.R. Link, M.J. Sailor: Standoff detection of chemicals using porous silicon ‘‘smart dust’’ particles, Adv. Mater. 14(18), 1270–1272 (2002)Google Scholar
  94. 21.94
    J. Salonen, L. Laitinen, A. Kaukonen, J. Tuura, M. Bjorkqvist, T. Heikkila, K. Vahaheikkila, J. Hirvonen, V. Lehto: Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs, J. Control. Release 108(2/3), 362–374 (2005) doi: 10.1016/j.jconrel.2005.08.017 CrossRefGoogle Scholar
  95. 21.95
    H.A. Santos, J. Riikonen, J. Salonen, E. Mäkilä, T. Heikkilä, T. Laaksonen, L. Peltonen, V.P. Lehto, J. Hirvonen: In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size, Acta. Biomater. 6(7), 2721–2731 (2010) doi: 10.1016/j.actbio.2009.12.043 CrossRefGoogle Scholar
  96. 21.96
    J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor: Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nat. Mater. 8(4), 331–336 (2009) doi: 10.1038/nmat2398 CrossRefGoogle Scholar
  97. 21.97
    R.A. Petros, J.M. DeSimone: Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov. 9(8), 615–627 (2010) doi: 10.1038/nrd2591 CrossRefGoogle Scholar
  98. 21.98
    S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone: The effect of particle design on cellular internalization pathways, Proc. Natl. Acad. Sci. 105(33), 11613–11618 (2008) doi: 10.1073/pnas.0801763105 CrossRefGoogle Scholar
  99. 21.99
    B. Godin, C. Chiappini, S. Srinivasan, J.F. Alexander, K. Yokoi, M. Ferrari, P. Decuzzi, X. Liu: Discoidal porous silicon particles: Fabrication and biodistribution in breast cancer bearing mice, Adv. Funct. Mater. 22(20), 4225–4235 (2012) doi: 10.1002/adfm.201200869 CrossRefGoogle Scholar
  100. 21.100
    C. Chiappini, E. Tasciotti, J.R. Fakhoury, D. Fine, L. Pullan, Y.C. Wang, L. Fu, X. Liu, M. Ferrari: Tailored porous silicon microparticles: Fabrication and properties, Chem. Phys. Chem. 11(5), 1029–1035 (2010) doi: 10.1002/cphc.200900914 CrossRefGoogle Scholar
  101. 21.101
    C. Chiappini, E. Tasciotti, R.E. Serda, L. Brousseau, X. Liu, M. Ferrari: Mesoporous silicon particles as intravascular drug delivery vectors: Fabrication, in-vitro, and in-vivo assessments, Phys. Stat. Sol. C 8(6), 1826–1832 (2011) doi: 10.1002/pssc.201000344 CrossRefGoogle Scholar
  102. 21.102
    C. Zhang, C. Li, Z. Liu, J. Zheng, C. Xue, Y. Zuo, B. Cheng, Q. Wang: Electrically conductive and optically active porous silicon nanowires, Nano. Lett. 9(12), 4539–4543 (2009) doi: 10.1021/nl903030h CrossRefGoogle Scholar
  103. 21.103
    C. Chartier, S. Bastide, C. Lévy-Clément: Metal-assisted chemical etching of silicon in HF–H2O2, Electrochim. Acta. 53(17), 5509–5516 (2008) doi: 10.1016/j.electacta.2008.03.009 CrossRefGoogle Scholar
  104. 21.104
    N. Geyer, B. Fuhrmann, Z. Huang, J. de Boor, H.S. Leipner, P. Werner: Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts, J. Phys. Chem. C 116(24), 13446–13451 (2012) doi: 10.1021/jp3034227 CrossRefGoogle Scholar
  105. 21.105
    X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, X. Duan: Unveiling the formation pathway of single crystalline porous silicon nanowires, ACS Appl. Mater. Interf. 3(2), 261–270 (2011) doi: 10.1021/am1009056 CrossRefGoogle Scholar
  106. 21.106
    J. Kim, H. Rhu, W. Lee: A continuous process for Si nanowires with prescribed lengths, J. Mater. Chem. 21(40), 15889–15894 (2011) doi: 10.1039/C1JM13831F CrossRefGoogle Scholar
  107. 21.107
    M. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, E. Di Fabrizio: Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications, Sensors 14(4), 6056–6083 (2014) doi: 10.3390/s140406056 CrossRefGoogle Scholar
  108. 21.108
    R. Elnathan, L. Isa, D. Brodoceanu, A. Nelson, F.J. Harding, B. Delalat, T. Kraus, N.H. Voelcker: Versatile particle-based route to engineer vertically aligned silicon nanowire arrays and nanoscale pores, ACS Appl. Mater. Interf. 7(42), 23717–23724 (2015) doi: 10.1021/acsami.5b07777 CrossRefGoogle Scholar
  109. 21.109
    H. Alhmoud, B. Delalat, R. Elnathan, A.C. Rius, A. Chaix, M.L. Rogers, J.-O. Durand, N.H. Voelcker: Porous silicon nanodiscs for targeted drug delivery, Adv. Funct. Mater. 25(7), 1137–1145 (2015) doi: 10.1002/adfm.201403414 CrossRefGoogle Scholar
  110. 21.110
    H. Lin, H.-Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, T. Hung, J. Zhou, J.C. Ho, C.-Y. Wong: Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping, J. Mater. Chem. A 1(34), 9942–9946 (2013) doi: 10.1039/C3TA11889D CrossRefGoogle Scholar
  111. 21.111
    F. Gentile, M.L. Coluccio, R.P. Zaccaria, M. Francardi, G. Cojoc, G. Perozziello, R. Raimondo, P. Candeloro, E. Di Fabrizio: Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles, Nanoscale 6(14), 8208–8225 (2014) doi: 10.1039/C4NR00796D CrossRefGoogle Scholar
  112. 21.112
    G.S. Higashi, Y.J. Chabal, G.W. Trucks, K. Raghavachari: Ideal hydrogen termination of the Si (111) surface, Appl. Phys. Lett. 56(7), 656–658 (1990) doi: 10.1063/1.102728 CrossRefGoogle Scholar
  113. 21.113
    A.G. Cullis, L.T. Canham, P.D.J. Calcott: The structural and luminescence properties of porous silicon, J. Appl. Phys. 82(3), 909 (1997) doi: 10.1063/1.366536 CrossRefGoogle Scholar
  114. 21.114
    M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, M. Ohwada: Growth of native oxide on a silicon surface, J. Appl. Phys. 68(3), 1272 (1990) doi: 10.1063/1.347181 CrossRefGoogle Scholar
  115. 21.115
    M.A. Tischler, R.T. Collins, J.H. Stathis, J.C. Tsang: Luminescence degradation in porous silicon, Appl. Phys. Lett. 60(5), 639 (1992) doi: 10.1063/1.106578 CrossRefGoogle Scholar
  116. 21.116
    M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue: Electronic states and luminescence in porous silicon quantum dots: The role of oxygen, Phys. Rev. Lett. 82(1), 197–200 (1999) doi: 10.1103/PhysRevLett.82.197 CrossRefGoogle Scholar
  117. 21.117
    J. Riikonen, M. Salomäki, J. van Wonderen, M. Kemell, W. Xu, O. Korhonen, M. Ritala, F. MacMillan, J. Salonen, V.P. Lehto: Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods, Langmuir 28(28), 10573–10583 (2012) doi: 10.1021/la301642w CrossRefGoogle Scholar
  118. 21.118
    J.B. Brzoska, I.B. Azouz, F. Rondelez: Silanization of solid substrates: A step toward reproducibility, Langmuir 10(11), 4367–4373 (1994), doi:10.1021/la00023a072Google Scholar
  119. 21.119
    G.T. Hermanson: Bioconjugate Techniques, 3rd edn. (Elsevier, Amsterdam 2013)Google Scholar
  120. 21.120
    J. Salonen, E. Laine, L. Niinistö: Thermal carbonization of porous silicon surface by acetylene, J. Appl. Phys. 91(1), 456 (2002) doi: 10.1063/1.1421221 CrossRefGoogle Scholar
  121. 21.121
    P. Allongue, V.C. Kieling, H. Gerischer: Etching of silicon in NaOH solutions, J. Electrochem. Soc. 140(4), 1009–1018 (1993) doi: 10.1149/1.2056189 CrossRefGoogle Scholar
  122. 21.122
    J.O. Martinez, C. Chiappini, A. Ziemys, A.M. Faust, M. Kojic, X. Liu, M. Ferrari, E. Tasciotti: Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics, Biomaterials 34, 8469–8477 (2013) doi: 10.1016/j.biomaterials.2013.07.049 CrossRefGoogle Scholar
  123. 21.123
    R.E. Serda, A. Mack, M. Pulikkathara, A.M. Zaske, C. Chiappini, J.R. Fakhoury, D. Webb, B. Godin, J.L. Conyers, X.W. Liu, J.A. Bankson, M. Ferrari: Cellular association and assembly of a multistage delivery system, Small 6(12), 1329–1340 (2010) doi: 10.1002/smll.201000126 CrossRefGoogle Scholar
  124. 21.124
    S.H.C. Anderson, H. Elliott, D.J. Wallis, L.T. Canham, J.J. Powell: Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions, Phys. Stat. Sol A 197(2), 331–335 (2003) doi: 10.1002/pssa.200306519 CrossRefGoogle Scholar
  125. 21.125
    B. Godin, J. Gu, R.E. Serda, R. Bhavane, E. Tasciotti, C. Chiappini, X. Liu, T. Tanaka, P. Decuzzi, M. Ferrari: Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation, J. Biomed. Mater. Res. A 94A(4), 1236–1243 (2010) doi: 10.1002/jbm.a.32807 CrossRefGoogle Scholar
  126. 21.126
    W. Sun, J.E. Puzas, T.J. Sheu, X. Liu, P.M. Fauchet: Nano-to microscale porous silicon as a cell interface for bone-tissue engineering, Adv. Mater. 19(7), 921–924 (2007) doi: 10.1002/adma.200600319 CrossRefGoogle Scholar
  127. 21.127
    T. Jalkanen, E. Mäkilä, Y.I. Suzuki, T. Urata, K. Fukami, T. Sakka, J. Salonen, Y.H. Ogata: Studies on chemical modification of porous silicon-based graded-index optical microcavities for improved stability under alkaline conditions, Adv. Funct. Mater. 22(18), 3890–3898 (2012) doi: 10.1002/adfm.201200386 CrossRefGoogle Scholar
  128. 21.128
    A.T. Balter, Z. Shatsberg, M. Beckerman, E. Segal, N. Artzi: Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues, Nat. Comm. 6, 6208 (2015) doi: 10.1038/ncomms7208 CrossRefGoogle Scholar
  129. 21.129
    T. Tanaka, B. Godin, R. Bhavane, R.N. Alicea, J. Gu, X. Liu, C. Chiappini, J.R. Fakhoury, S. Amra, A. Ewing: In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice, Int. J. Pharm. 402(1/2), 190–197 (2010) doi: 10.1016/j.ijpharm.2010.09.015 CrossRefGoogle Scholar
  130. 21.130
    L. Gu, D.J. Hall, Z. Qin, E. Anglin, J. Joo, D.J. Mooney, S.B. Howell, M.J. Sailor: In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles, Nat. Comm. 4, 1–7 (2013) doi: 10.1038/ncomms3326 CrossRefGoogle Scholar
  131. 21.131
    M. Ariza-Avidad, A. Nieto, A.S. alinas-Castillo, L.F. Capitan-Vallvey, G.M. Miskelly, M.J. Sailor: Monitoring of degradation of porous silicon photonic crystals using digital photography, Nanoscale Res. Lett. 9(1), 410 (2014) doi: 10.1186/1556-276X-9-410 CrossRefGoogle Scholar
  132. 21.132
    S.P. Low, K.A. Williams, L.T. Canham, N.H. Voelcker: Generation of reactive oxygen species from porous silicon microparticles in cell culture medium, J. Biomed. Mater. Res. A 93A(3), 1124–1131 (2010) doi: 10.1002/jbm.a.32610 CrossRefGoogle Scholar
  133. 21.133
    S. Low, K. Williams, L. Canham, N. Voelcker: Evaluation of mammalian cell adhesion on surface-modified porous silicon, Biomaterials 27(26), 4538–4546 (2006) doi: 10.1016/j.biomaterials.2006.04.015 CrossRefGoogle Scholar
  134. 21.134
    S.D. Alvarez, A.M. Derfus, M.P. Schwartz, S.N. Bhatia, M.J. Sailor: The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors, Biomaterials 30(1), 26–34 (2009) doi: 10.1016/j.biomaterials.2008.09.005 CrossRefGoogle Scholar
  135. 21.135
    L.M. Bimbo, M. Sarparanta, H.A. Santos, A.J. Airaksinen, E. Mäkilä, T. Laaksonen, L. Peltonen, V.P. Lehto, J. Hirvonen, J. Salonen: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats, ACS Nano 4(6), 3023–3032 (2010) doi: 10.1021/nn901657w CrossRefGoogle Scholar
  136. 21.136
    S.P. Low, N.H. Voelcker, L.T. Canham, K.A. Williams: The biocompatibility of porous silicon in tissues of the eye, Biomaterials 30(15), 2873–2880 (2009) doi: 10.1016/j.biomaterials.2009.02.008 CrossRefGoogle Scholar
  137. 21.137
    A.S.-W. Goh, A.Y.-F. Chung, R.H.-G. Lo, T.-N. Lau, S.W.-K. Yu, M. Chng, S. Satchithanantham, S.L.-E. Loong, D.C.-E. Ng, B.-C. Lim, S. Connor, P.K.-H. Chow: A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device – A first-in-man study, Int. J. Radiat. Oncol. Biol. Phys. 67(3), 786–792 (2007) doi: 10.1016/j.ijrobp.2006.09.011 CrossRefGoogle Scholar
  138. 21.138
    R.E. Serda, J. Gu, R.C. Bhavane, X. Liu, C. Chiappini, P. Decuzzi, M. Ferrari: The association of silicon microparticles with endothelial cells in drug delivery to the vasculature, Biomaterials 30(13), 2440–2448 (2009) doi: 10.1016/j.biomaterials.2009.01.019 CrossRefGoogle Scholar
  139. 21.139
    S. Ferrati, A. Mack, C. Chiappini, X. Liu, A.J. Bean, M. Ferrari, R.E. Serda: Intracellular trafficking of silicon particles and logic-embedded vectors, Nanoscale 2(8), 1512–1520 (2010) doi: 10.1039/C0NR00227E CrossRefGoogle Scholar
  140. 21.140
    E. Tasciotti, B. Godin, J.O. Martinez, C. Chiappini, R.C. Bhavane, X. Liu, M. Ferrari: Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles, Mol. Imag. 10(1), 56 (2011)Google Scholar
  141. 21.141
    E. De Rosa, C. Chiappini, D. Fan, X. Liu, M. Ferrari, E. Tasciotti: Agarose surface coating influences intracellular accumulation and enhances payload stability of a nano-delivery system, Pharm. Res. 28(7), 1520–1530 (2011) doi: 10.1007/s11095-011-0453-2 CrossRefGoogle Scholar
  142. 21.142
    D. Liu, L.M. Bimbo, E. Mäkilä, F. Villanova, M. Kaasalainen, B. Herranz-Blanco, C.M. Caramella, V.P. Lehto, J. Salonen, K.-H. Herzig, J. Hirvonen, H.A. Santos: Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles, J. Control. Release 170(2), 268–278 (2013) doi: 10.1016/j.jconrel.2013.05.036 CrossRefGoogle Scholar
  143. 21.143
    M. Xue, X. Zhong, Z. Shaposhnik, Y. Qu, F. Tamanoi, X. Duan, J.I. Zink: pH-operated mechanized porous silicon nanoparticles, J. Am. Chem. Soc. 133(23), 8798–8801 (2011) doi: 10.1021/ja201252e CrossRefGoogle Scholar
  144. 21.144
    A.P. Mann, T. Tanaka, A. Somasunderam, X. Liu, D.G. Gorenstein, M. Ferrari: E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow, Adv. Mater. 23(36), H278–H282 (2011) doi: 10.1002/adma.201101541 CrossRefGoogle Scholar
  145. 21.145
    E. Secret, M. Maynadier, A. Gallud, M.G. Bobo, A. Chaix, E. Belamie, P. Maillard, M.J. Sailor, M. Garcia, J.O. Durand, F. Cunin: Anionic porphyrin -grafted porous silicon nanoparticles for photodynamic therapy, Chem. Comm. 49(39), 4202–4204 (2013) doi: 10.1039/C3CC38837A CrossRefGoogle Scholar
  146. 21.146
    M. Wang, J.L. Coffer, K. Dorraj, P.S. Hartman, A. Loni, L.T. Canham: Sustained antibacterial activity from triclosan-loaded nanostructured mesoporous silicon, Mol. Pharm. 7(6), 2232–2239 (2010) doi: 10.1021/mp100227m CrossRefGoogle Scholar
  147. 21.147
    R. Xu, G. Zhang, J. Mai, X. Deng, V. Segura-Ibarra, S. Wu, J. Shen, H. Liu, Z. Hu, L. Chen, Y. Huang, E. Koay, Y. Huang, J. Liu, J.E. Ensor, E. Blanco, X. Liu, M. Ferrari, H. Shen: An injectable nanoparticle generator enhances delivery of cancer therapeutics, Nat. Biotechnol. 34(4), 414–418 (2016) doi: 10.1038/nbt.3506 CrossRefGoogle Scholar
  148. 21.148
    J.O. Martinez, M. Evangelopoulos, V. Karun, E. Shegog, J.A. Wang, C. Boada, X. Liu, M. Ferrari, E. Tasciotti: The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation, Biomaterials 35(37), 9824–9832 (2014) doi: 10.1016/j.biomaterials.2014.08.024 CrossRefGoogle Scholar
  149. 21.149
    L. Gu, L.E. Ruff, Z. Qin, M. Corr, S.M. Hedrick, M.J. Sailor: Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody, Adv. Mater. 24(29), 3981–3987 (2012) doi: 10.1002/adma.201200776 CrossRefGoogle Scholar
  150. 21.150
    C. Chiappini, J.O. Martinez, E. De Rosa, C.S. Almeida, E. Tasciotti, M.M. Stevens: Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: Exploring the biointerface, ACS Nano 9, 5500–5509 (2015) doi: 10.1021/acsnano.5b01490 CrossRefGoogle Scholar
  151. 21.151
    M.M. Orosco, C. Pacholski, G.M. Miskelly, M.J. Sailor: Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity, Adv. Mater. 18(11), 1393–1396 (2006) doi: 10.1002/adma.200502420 CrossRefGoogle Scholar
  152. 21.152
    C. Chiappini, P. Campagnolo, C.S. Almeida, N. Annassi-Ghadi, L.W. Chow, G.B. Hanna, M.M. Stevens: Mapping Local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles, Adv. Mater. 27(35), 5147–5152 (2015) doi: 10.1002/adma.201501304 CrossRefGoogle Scholar
  153. 21.153
    A. Caliò, I. Rea, J. Politi, P. Giardina, S. Longobardi, L.D. Stefano: Hybrid bio/non-bio interfaces for protein-glucose interaction monitoring, J. Appl. Phys. 114(13), 134904 (2013) doi: 10.1063/1.4824379 CrossRefGoogle Scholar
  154. 21.154
    G. Rong, J.D. Ryckman, R.L. Mernaugh, S.M. Weiss: Label-free porous silicon membrane waveguide for DNA sensing, Appl. Phys. Lett. 93(16), 161109 (2008) doi: 10.1063/1.3005620 CrossRefGoogle Scholar
  155. 21.155
    N. Massad-Ivanir, G. Shtenberg, A. Tzur, M.A. Krepker, E. Segal: Engineering nanostructured porous SiO2 surfaces for bacteria detection via ‘‘direct cell capture’’, Anal. Chem. 83(9), 3282–3289 (2011) doi: 10.1021/ac200407w CrossRefGoogle Scholar
  156. 21.156
    L. De Stefano, I. Rea, I. Rendina, L. Rotiroti, M. Rossi, S. D'Auria: Resonant cavity enhanced optical microsensor for molecular interactions based on porous silicon, Phys. Stat. Sol. A 203(5), 886–891 (2006) doi: 10.1002/pssa.200521350 CrossRefGoogle Scholar
  157. 21.157
    S. D'Auria, M. de Champdoré, V. Aurilia, A. Parracino, M. Staiano, A. Vitale, M. Rossi, I. Rea, L. Rotiroti, A.M. Rossi, S. Borini, I. Rendina, L. De Stefano: Nanostructured silicon-based biosensors for the selective identification of analytes of social interest, J. Phys. Condens. Matter 18(33), S2019–S2028 (2006) doi: 10.1088/0953-8984/18/33/S17 CrossRefGoogle Scholar
  158. 21.158
    V.S.Y. Lin, K. Motesharei, K.-P.S. Dancil, M.J. Sailor, M.R. Ghadiri: A porous silicon-based optical interferometric biosensor, Science 278(5339), 840–843 (1997) doi: 10.1126/science.278.5339.840 CrossRefGoogle Scholar
  159. 21.159
    J. Zhang, Y. Wu, B. Zhang, M. Li, S. Jia, S. Jiang, H. Zhou, Y. Zhang, C. Zhang, A.P.F. Turner: Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor, Anal. Lett. 45(9), 986–992 (2012) doi: 10.1080/00032719.2012.670784 CrossRefGoogle Scholar
  160. 21.160
    L.A. Osminkina, V.A. Sivakov, G.A. Mysov, V.A. Georgobiani, U.A. Natashina, F. Talkenberg, V.V. Solovyev, A.A. Kudryavtsev, V.Y. Timoshenko: Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy, Nanoscale Res. Lett. 9(1), 1 (2014) doi: 10.1186/1556-276X-9-463 CrossRefGoogle Scholar
  161. 21.161
    A. Gizzatov, C. Stigliano, J.S. Ananta, R. Sethi, R. Xu, A. Guven, M. Ramirez, H. Shen, A. Sood, M. Ferrari, L.J. Wilson, X. Liu, P. Decuzzi: Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer, Cancer Lett. 352(1), 97–101 (2014) doi: 10.1016/j.canlet.2014.06.001 CrossRefGoogle Scholar
  162. 21.162
    R. Duncan, R. Gaspar: Nanomedicine (s) under the microscope, Mol. Pharm. 8(6), 2101–2141 (2011)Google Scholar
  163. 21.163
    W.B. Liechty, D.R. Kryscio, B.V. Slaughter, N.A. Peppas: Polymers for drug delivery systems, Annu. Rev. Chem. Biomol. Eng. 1, 149 (2010)Google Scholar
  164. 21.164
    Y.H. Yun, B.K. Lee, K. Park: Controlled drug delivery: Historical perspective for the next generation, J. Control. Release 219, 2–7 (2011)Google Scholar
  165. 21.165
    H.A. Santos: Porous Silicon for Biomedical Applications (Elsevier, Amsterdam 2014)Google Scholar
  166. 21.166
    N. Shrestha, M.-A. Shahbazi, F. Araújo, E. Mäkilä, J. Raula, E.I. Kauppinen, J. Salonen, B. Sarmento, J. Hirvonen, H.A. Santos: Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system, Biomaterials 68, 9–20 (2015)Google Scholar
  167. 21.167
    M.K. Marschütz, A. Bernkop-Schnürch: Oral peptide drug delivery: polymer–inhibitor conjugates protecting insulin from enzymatic degradation in vitro, Biomaterials 21(14), 1499–1507 (2000)Google Scholar
  168. 21.168
    S. Munier, I. Messai, T. Delair, B. Verrier, Y. Ataman-Önal: Cationic PLA nanoparticles for DNA delivery: Comparison of three surface polycations for DNA binding, protection and transfection properties, Colloids Surf. B 43(3), 163–173 (2005)Google Scholar
  169. 21.169
    H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe, M.G. Bawendi, J.V. Frangioni: Renal clearance of quantum dots, Nat. Biotechnol. 25(10), 1165–1170 (2007)Google Scholar
  170. 21.170
    M.I. Stockman, D.J. Bergman, T. Kobayashi: Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems, Phys. Rev. B 69, 054202 (2004)Google Scholar
  171. 21.171
    S. Stolnik, L. Illum, S. Davis: Long circulating microparticulate drug carriers, Adv. Drug Deliv. Rev. 64, 290–301 (2012)Google Scholar
  172. 21.172
    H.A. Santos, E. Mäkilä, A.J. Airaksinen, L.M. Bimbo, J. Hirvonen: Porous silicon nanoparticles for nanomedicine: Preparation and biomedical applications, Nanomedicine 9(4), 535–554 (2014)Google Scholar
  173. 21.173
    H.A. Santos, J. Hirvonen: Nanostructured porous silicon materials: Potential candidates for improving drug delivery, Nanomedicine 7(9), 1281–1284 (2012)Google Scholar
  174. 21.174
    F. Fontana, M.P. Ferreira, A. Correia, J. Hirvonen, H.A. Santos: Microfluidics as a cutting-edge technique for drug delivery applications, J. Drug Deliv. Sci. Technol. 34, 76–87 (2016)Google Scholar
  175. 21.175
    I. Polenz, D.A. Weitz, J.-C. Baret: Polyurea microcapsules in microfluidics: Surfactant control of soft membranes, Langmuir 31(3), 1127–1134 (2015)Google Scholar
  176. 21.176
    A. Utada, L.-Y. Chu, A. Fernandez-Nieves, D. Link, C. Holtze, D. Weitz: Dripping, jetting, drops, and wetting: The magic of microfluidics, MRS Bull. 32(09), 702–708 (2007)Google Scholar
  177. 21.177
    A.S. Utada, A. Fernandez-Nieves, H.A. Stone, D.A. Weitz: Dripping to jetting transitions in coflowing liquid streams, Phys. Rev. Lett. 99(9), 094502 (2007)Google Scholar
  178. 21.178
    Y. Kim, B.L. Chung, M. Ma, W.J. Mulder, Z.A. Fayad, O.C. Farokhzad, R. Langer: Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices, Nano Lett. 12(7), 3587–3591 (2012)Google Scholar
  179. 21.179
    P.M. Valencia, O.C. Farokhzad, R. Karnik, R. Langer: Microfluidic technologies for accelerating the clinical translation of nanoparticles, Nat. Nanotechnol. 7(10), 623–629 (2012) doi: 10.1038/nnano.2012.168 CrossRefGoogle Scholar
  180. 21.180
    E.F. Petricoin, D.K. Ornstein, C.P. Paweletz, A. Ardekani, P.S. Hackett, B.A. Hitt, A. Velasco, C. Trucco, L. Wiegand, K. Wood, C.B. Simone, P.J. Levine, W.M. Linehan, M.R.E. Buck, S.M. Steinberg, E.C. Kohn, L.A. Liotta: Serum proteomic patterns for detection of prostate cancer, J. Natl. Cancer Inst. 94(20), 1576–1578 (2002)Google Scholar
  181. 21.181
    T. Rossow, J.A. Heyman, A.J. Ehrlicher, A. Langhoff, D.A. Weitz, R. Haag, S. Seiffert: Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics, J. Am. Chem. Soc. 134(10), 4983–4989 (2012) doi: 10.1021/Ja300460p CrossRefGoogle Scholar
  182. 21.182
    G.M. Whitesides: The origins and the future of microfluidics, Nature 442(7101), 368–373 (2006) doi: 10.1038/nature05058 CrossRefGoogle Scholar
  183. 21.183
    A. Manz, D.J. Harrison, E.M. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip, J. Chromatogr. A 593(1), 253–258 (1992)Google Scholar
  184. 21.184
    Y. Hu, A. Bouamrani, E. Tasciotti, L. Li, X. Liu, M. Ferrari: Tailoring of the nanotexture of mesoporous silica films and their functionalized derivatives for selectively harvesting low molecular weight protein, ACS Nano 4(1), 439–451 (2010)Google Scholar
  185. 21.185
    J.S. Sander, L. Isa, P.A. Rühs, P. Fischer, A.R. Studart: Stabilization mechanism of double emulsions made by microfluidics, Soft Matter 8(45), 11471–11477 (2012)Google Scholar
  186. 21.186
    L.R. Arriaga, S.S. Datta, S.H. Kim, E. Amstad, T.E. Kodger, F. Monroy, D.A. Weitz: Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation, Small 10(5), 950–956 (2014)Google Scholar
  187. 21.187
    S. Nie, S.R. Emory: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275(5303), 1102–1106 (1997)Google Scholar
  188. 21.188
    Y.-C. Tan, V. Cristini, A.P. Lee: Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sens. Actuators B 114(1), 350–356 (2006)Google Scholar
  189. 21.189
    J.C. Stachowiak, D.L. Richmond, T.H. Li, A.P. Liu, S.H. Parekh, D.A. Fletcher: Unilamellar vesicle formation and encapsulation by microfluidic jetting, Proc. Natl. Acad. Sci. 105(12), 4697–4702 (2008)Google Scholar
  190. 21.190
    G. Whitesides, A. Stroock:: Flexible methods for microfluidics, J. Phys. Today 54(6), 42–48 (2001)Google Scholar
  191. 21.191
    A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz: Monodisperse double emulsions generated from a microcapillary device, Science 308(5721), 537–541 (2005) doi: 10.1126/science.1109164 CrossRefGoogle Scholar
  192. 21.192
    S. Yang, F. Guo, B. Kiraly, X. Mao, M. Lu, K.W. Leong, T.J. Huang: Microfluidic synthesis of multifunctional Janus particles for biomedical applications, Lab Chip 12(12), 2097–2102 (2012) doi: 10.1039/c2lc90046g CrossRefGoogle Scholar
  193. 21.193
    S. Mazzitelli, L. Capretto, F. Quinci, R. Piva, C. Nastruzzi: Preparation of cell-encapsulation devices in confined microenvironment, Adv. Drug Deliv. Rev. 65(11/12), 1533–1555 (2013)Google Scholar
  194. 21.194
    Y. Kim, F. Fay, D.P. Cormode, B.L. Sanchez-Gaytan, J. Tang, E.J. Hennessy, M.M. Ma, K. Moore, O.C. Farokhzad, E.A. Fisher, W.J.M. Mulder, R. Langer, Z.A. Fayad: Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics, ACS Nano 7(11), 9975–9983 (2013) doi: 10.1021/Nn4039063 CrossRefGoogle Scholar
  195. 21.195
    H.A. Santos: Opinion paper: Microfluidics technique to revolutionize the drug delivery field: Current developments and applications, Curr. Drug Deliv. 12(6), 642–644 (2015)Google Scholar
  196. 21.196
    S. Marre, K.F. Jensen: Synthesis of micro and nanostructures in microfluidic systems, Chem. Soc. Rev. 39(3), 1183–1202 (2010) doi: 10.1039/b821324k CrossRefGoogle Scholar
  197. 21.197
    R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, R. Langer, O.C. Farokhzad: Microfluidic platform for controlled synthesis of polymeric nanoparticles, Nano Lett. 8(9), 2906–2912 (2008)Google Scholar
  198. 21.198
    S.H. Kim, J.W. Kim, D.H. Kim, S.H. Han, D.A. Weitz: Polymersomes containing a hydrogel network for high stability and controlled release, Small 9(1), 124–131 (2013)Google Scholar
  199. 21.199
    S. Stainmesse, H. Fessi, J.P. Devissaguet, F. Puisieux, C. Theis: Process for the preparation of dispersible colloidal systems of a substance in the form of nanoparticles, US Patent 5133908 (US005133908A) (1992)Google Scholar
  200. 21.200
    F. Ganachaud, J.L. Katz: Nanoparticles and nanocapsules created using the Ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices, Chem. Phys. Chem. 6(2), 209–216 (2005)Google Scholar
  201. 21.201
    F. Kong, X. Zhang, H. Zhang, X. Qu, D. Chen, M. Servos, E. Mäkilä, J. Salonen, H.A. Santos, M. Hai, D.A. Weitz: Inhibition of multidrug resistance of cancer cells by co-delivery of DNA nanostructures and drugs using porous silicon nanoparticles@giant liposomes, Adv. Funct. Mater. 25(22), 3330–3340 (2015) doi: 10.1002/adfm.201500594 CrossRefGoogle Scholar
  202. 21.202
    F. Araujo, N. Shrestha, M.A. Shahbazi, D. Liu, B. Herranz-Blanco, E.M. Makila, J.J. Salonen, J.T. Hirvonen, P.L. Granja, B. Sarmento, H.A. Santos: Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs, ACS Nano 9(8), 8291–8302 (2015) doi: 10.1021/acsnano.5b02762 CrossRefGoogle Scholar
  203. 21.203
    H. Zhang, D. Liu, M.A. Shahbazi, E. Makila, B. Herranz-Blanco, J. Salonen, J. Hirvonen, H.A. Santos: Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix, Adv. Mater. 26(26), 4497–4503 (2014) doi: 10.1002/adma.201400953 CrossRefGoogle Scholar
  204. 21.204
    D. Liu, H. Zhang, B.-H. Blanco, E. Makila, V.P. Lehto, J. Salonen, J. Hirvonen, H.A. Santos: Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery, Small 10(10), 2029–2038 (2014) doi: 10.1002/smll.201303740 CrossRefGoogle Scholar
  205. 21.205
    D. Liu, B. Herranz-Blanco, E. Makila, L.R. Arriaga, S. Mirza, D.A. Weitz, N. Sandler, J. Salonen, J. Hirvonen, H.A. Santos: Microfluidic templated mesoporous silicon-solid lipid microcomposites for sustained drug delivery, ACS Appl. Mater. Interfaces 5(22), 12127–12134 (2013) doi: 10.1021/am403999q CrossRefGoogle Scholar
  206. 21.206
    A. Jahn, S.M. Stavis, J.S. Hong, W.N. Vreeland, D.L. Devoe, M. Gaitan: Microfluidic mixing and the formation of nanoscale lipid vesicles, ACS Nano 4(4), 2077–2087 (2010) doi: 10.1021/Nn901676x CrossRefGoogle Scholar
  207. 21.207
    Y.T. Kim, B.L. Chung, M.M. Ma, W.J.M. Mulder, Z.A. Fayad, O.C. Farokhzad, R. Langer: Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices, Nano Lett. 12(7), 3587–3591 (2012) doi: 10.1021/Nl301253v CrossRefGoogle Scholar
  208. 21.208
    N. Kolishetti, S. Dhar, P.M. Valencia, L.Q. Lin, R. Karnik, S.J. Lippard, R. Langer, O.C. Farokhzad: Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy, Proc. Natl. Acad. Sci. 107(42), 17939–17944 (2010) doi: 10.1073/pnas.1011368107 CrossRefGoogle Scholar
  209. 21.209
    A. Jahn, W.N. Vreeland, M. Gaitan, L.E. Locascio: Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing, J. Am. Chem. Soc. 126(9), 2674–2675 (2004) doi: 10.1021/Ja0318030 CrossRefGoogle Scholar
  210. 21.210
    C.J. Thiele: Neuroblastoma. In: Human Cell Culture, Vol. 1, ed. by J.R.W. Masters, B. Palsson (Springer, Dordrecht 1998) pp. 21–53Google Scholar
  211. 21.211
    J.O. McNamara, E.R. Andrechek, Y. Wang, K.D. Viles, R.E. Rempel, E. Gilboa, B.A. Sullenger, P.H. Giangrande: Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras, Nat. Biotechnol. 24(8), 1005–1015 (2006) doi: 10.1038/Nbt1223 CrossRefGoogle Scholar
  212. 21.212
    F.S. Majedi, M.M. Hasani-Sadrabadi, J.J. VanDersarl, N. Mokarram, S. Hojjati-Emami, E. Dashtimoghadam, S. Bonakdar, M.A. Shokrgozar, A. Bertsch, P. Renaud: On-chip fabrication of paclitaxel-loaded chitosan nanoparticles for cancer therapeutics, Adv. Funct. Mater. 24(4), 432–441 (2014)Google Scholar
  213. 21.213
    A.J. Mieszawska, Y. Kim, A. Gianella, I. van Rooy, B. Priem, M.P. Labarre, C. Ozcan, D.P. Cormode, A. Petrov, R. Langer, O.C. Farokhzad, Z.A. Fayad, W.J.M. Mulder: Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy, Bioconj. Chem. 24(9), 1429–1434 (2013) doi: 10.1021/Bc400166j CrossRefGoogle Scholar
  214. 21.214
    P.M. Valencia, P.A. Basto, L.F. Zhang, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik: Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing, ACS Nano 4(3), 1671–1679 (2010)Google Scholar
  215. 21.215
    M. Wang, M. Thanou: Targeting nanoparticles to cancer, Pharmacol. Res. 62(2), 90–99 (2010)Google Scholar
  216. 21.216
    L. Zhang, F. Gu, J. Chan, A. Wang, R. Langer, O. Farokhzad: Nanoparticles in medicine: Therapeutic applications and developments, Clin. Pharmacol. Ther. 83(5), 761–769 (2008)Google Scholar
  217. 21.217
    K.W. Spitzer, R.D. Vaughan-Jones: Regulation of intracellular pH in mammalian cells. In: The Sodium-Hydrogen Exchanger, ed. by M. Karmazyn, M. Arkiran, L. Fliegal (Springer, New York 2003) pp. 1–15Google Scholar
  218. 21.218
    M. Stubbs, P.M. McSheehy, J.R. Griffiths, C.L. Bashford: Causes and consequences of tumour acidity and implications for treatment, Mol. Med. Today 6(1), 15–19 (2000)Google Scholar
  219. 21.219
    K.E. Broaders, J.A. Cohen, T.T. Beaudette, E.M. Bachelder, J.M.J. Frechet: Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy, Proc. Natl. Acad. Sci. USA 106(14), 5497–5502 (2009)Google Scholar
  220. 21.220
    E.M. Bachelder, T.T. Beaudette, K.E. Broaders, J.M.J. Frechet, M.T. Albrecht, A.J. Mateczun, K.M. Ainslie, J.T. Pesce, A.M. Keane-Myers: In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants, Mol. Pharm. 7(3), 826–835 (2010)Google Scholar
  221. 21.221
    M. Stockman: Nanoplasmonics: The physics behind the applications, Phys. Today 64(2), 39 (2011)Google Scholar
  222. 21.222
    H. Wendt: Ullmann’s encyclopedia of industrial chemistry. In: Ullmann’s Encyclopedia of Industrial Chemistry, ‘‘Electrochemistry’’, ed. by H. Wendt (Wiley-VCH, Winheim 2004)Google Scholar
  223. 21.223
    V. Dimitrova, L. Gorker: Modified Nernst equation for electroless metal deposition, Prog. React. Kinet. Mech. 31(1), 45–58 (2006)Google Scholar
  224. 21.224
    D. Goia, E. Matijevic: Preparation of monodispersed metal particles, New J. Chem. 22, 1203–1215 (1998)Google Scholar
  225. 21.225
    S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, H. Matsuda: Catalytic activity of noble metals for metal-assisted chemical etching of silicon, Electrochimica. Acta. 53, 35–41 (2007)Google Scholar
  226. 21.226
    S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, H. Matsuda: Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions, Electrochim. Acta. 53(1), 35–41 (2007)Google Scholar
  227. 21.227
    K. Kneipp: Surface-enhanced Raman scattering, Phys. Today 60(11), 40–47 (2007)Google Scholar
  228. 21.228
    M.L. Coluccio, F. Gentile, G. Das, A. Nicastri, A.M. Perri, P. Candeloro, G. Perozziello, R.P. Zaccaria, J.S.T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, E. Di Fabrizio: Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain, Sci. Adv. 1(8), e1500487 (2015)Google Scholar
  229. 21.229
    F. Gentile, M. Coluccio, A. Toma, E. Rondanina, M. Leoncini, F. De Angelis, G. Das, C. Dorigoni, P. Candeloro, E. Di Fabrizio: Electroless deposition dynamics of silver nanoparticles clusters: A diffusion limited aggregation (DLA) approach, Microelectron. Eng. 98, 359–362 (2012)Google Scholar
  230. 21.230
    R. Dawkins, D. ben-Avraham: Computer simulations of diffusion-limited reactions, Comput. Sci. Eng. 3(1), 72–76 (2001)Google Scholar
  231. 21.231
    T. Qiu, P. Chu: Self-selective electroless plating: an approach for fabrication of functional 1-D nanomaterials, Mater. Sci. Eng. R 61, 59–77 (2008)Google Scholar
  232. 21.232
    T. Qiu, X. Wu, Y. Mei, P. Chu, G. Siu: Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method, Appl. Phys. A 81, 669–671 (2005)Google Scholar
  233. 21.233
    T. Witten, L. Sander: Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47(19), 1400–1403 (1981)Google Scholar
  234. 21.234
    T. Witten, L. Sander: Diffusion-limited aggregation, Phys. Rev. B 27(9), 5686–5697 (1983)MathSciNetGoogle Scholar
  235. 21.235
    M. Saltzmann: Drug Delivery (Oxford University Press, Oxford 2001)Google Scholar
  236. 21.236
    P. Decuzzi, F. Gentile, A. Granaldi, A. Curcio, F. Causa, C. Indolfi, P. Netti, M. Ferrari: Flow chamber analysis of size effects in the adhesion of spherical particles, Int. J. Nanomed. 2(4), 689–696 (2007)Google Scholar
  237. 21.237
    P. Meakin: Diffusion controlled deposition on surfaces: Cluster size distribution, interface exponents, and other properties, Phys. Rev. B 30(8), 4207–4214 (1984)Google Scholar
  238. 21.238
    Z. Racz, T. Vicsek: Diffusion controlled deposition: Cluster statistics and scaling, Phys. Rev. Lett. 51(26), 2382–2385 (1983)Google Scholar
  239. 21.239
    F. Gentile, E. Battista, A. Accardo, M. Coluccio, M. Asande, G. Perozziello, G. Das, C. Liberale, F. De Angelis, P. Candeloro, P. Decuzzi, E. Di Fabrizio: Fractal structure can explain the increased hydrophobicity of nanoporous silicon films, Microelectron. Eng. 88, 2537–2540 (2011)Google Scholar
  240. 21.240
    F. Gentile, M.L. Coluccio, P. Candeloro, M. Barberio, G. Perozziello, M. Francardi, E. Di Fabrizio: Electroless deposition of metal nanoparticle clusters: Effect of pattern distance, J. Vacuum Sci. Technol. B 32(2), 031804 (2014)Google Scholar
  241. 21.241
    G. Simone, N. Malara, V. Trunzo, M. Renne, G. Perozziello, E. Di Fabrizio, A. Manz: Galectin-3 coats the membrane of breast cells and makes a signature of tumours, Mol. Biosys. 10(2), 258–265 (2014)Google Scholar
  242. 21.242
    G. Simone: An alternative approach to the phase change of proteins in an aqueous mixture with ethanol, Chem. Eng. Res. Design 105, 130–136 (2016)Google Scholar
  243. 21.243
    G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M.L. Coluccio, E. Carbone, E. Di Fabrizio: Microfluidic devices module tumor cell line susceptibility to NK cell recognition, Small 8(18), 2886–2894 (2012)Google Scholar
  244. 21.244
    G. Perozziello, P. Candeloro, A. De Grazia, F. Esposito, M. Allione, M.L. Coluccio, R. Tallerico, I. Valpapuram, L. Tirinato, G. Das, A. Giugni, B. Torre, P. Veltri, U. Kruhne, G.D. Valle, E. Di Fabrizio: Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers, Opt. Express 24(2), A180–A190 (2016)Google Scholar
  245. 21.245
    G. Simone: Demonstrating microdroplet coalescence for tailored and biodegradable microgel fabrication, RSC Adv. 5(70), 56848–56854 (2015)Google Scholar
  246. 21.246
    G. Simone: Micro analysis to map the glycome code, Proteomics 14(9), 994–1000 (2014)Google Scholar
  247. 21.247
    R. Catalano, G. Perozziello, G. Simone, P. Candeloro, F. Gentile, M.L. Coluccio, F. Pardeo, M. Burghammer, G. Cuda, C. Riekel, E. Di Fabrizio: Optimized fabrication protocols of microfluidic devices for x-ray analysis, Microelectron. Eng. 124, 13–16 (2014)Google Scholar
  248. 21.248
    G. Keramas, G. Perozziello, O. Geschke, C.B.V. Christensen: Development of a multiplex microarray microsystem, Lab Chip 4(2), 152–158 (2004)Google Scholar
  249. 21.249
    G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A.M. Perri, M.L. Coluccio, E. Parrotta, A. De Grazia, M. Tallerico, F. Pardeo, R. Catalano, G. Cuda, E. Di Fabrizio: A microfluidic dialysis device for complex biological mixture SERS analysis, Microelectron. Eng. 144, 37–41 (2015)Google Scholar
  250. 21.250
    G. Simone, N. Malara, V. Trunzo, G. Perozziello, P. Neuzil, M. Francardi, L. Roveda, M. Renne, U. Prati, V. Mollace, A. Manz, E. Di Fabrizio: Protein–carbohydrate complex reveals circulating metastatic cells in a microfluidic assay, Small 9(12), 2152–2161 (2013)Google Scholar
  251. 21.251
    G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M.L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H.D. Espinosa, G. Cuda, E. Di Fabrizio: Microfluidics and nanotechnology: Towards fully integrated analytical devices for the detection of cancer biomarkers, RSC Adv. 4(98), 55590–55598 (2014)Google Scholar
  252. 21.252
    G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, E. Di Fabrizio: A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells, Microelectron. Eng. 111, 314–319 (2013)Google Scholar
  253. 21.253
    G. Perozziello, J. Møllenbach, S. Laursen, E. di Fabrizio, K. Gernaey, U. Krühne: Lab on a chip automates in vitro cell culturing, Microelectron. Eng. 98, 655–658 (2012)Google Scholar
  254. 21.254
    G. Simone, G. Perozziello: UV/VIS transparent optical waveguides fabricated using organic–inorganic nanocomposite layers, J. Nanosci. Nanotechnol. 11, 2057–2063 (2011)Google Scholar
  255. 21.255
    F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio: Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures, Nature Photonics 5, 682–687 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Paolo Decuzzi
    • 1
  • Alessandro Coclite
    • 1
  • Aeju Lee
    • 2
  • Anna Lisa Palange
    • 1
  • Daniele Di Mascolo
    • 1
  • Ciro Chiappini
    • 3
  • Hélder A. Santos
    • 4
  • Maria Laura Coluccio
    • 5
  • Gerardo Perozziello
    • 5
  • Patrizio Candeloro
    • 5
  • Enzo Di Fabrizio
    • 6
  • Francesco Gentile
    • 7
  1. 1.Laboratory of Nanotechnology for Precision MedicineItalian Institute of TechnologyGenovaItaly
  2. 2.International Research Organization for Advanced Science and TechnologyKumamoto UniversityKumamotoJapan
  3. 3.Craniofacial Development and Stem Cell BiologyKing‘s College LondonLondonUK
  4. 4.Division of Pharmaceutical Chemistry and TechnologyUniversity of HelsinkiHelsinkiFinland
  5. 5.Dept. of Experimental and Clinical MedicineUniversity Magna Graecia of CatanzaroCatanzaroItaly
  6. 6.Dept. of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  7. 7.Dept. of Electrical Engineering and Information TechnologyUniversity Naples Federico IINaplesItaly

Personalised recommendations