Molecule-Based Devices

  • Françisco M. Raymo
Part of the Springer Handbooks book series (SPRINGERHAND)

Abstract

The constituent components of conventional devices are carved out of larger materials relying on physical methods. This top-down approach to engineered building blocks becomes increasingly challenging as the dimensions of the target structures approach the nanoscale. Nature, on the other hand, assembles nanoscaled biomolecules relying on chemical strategies. Small molecular building blocks are joined to produce nanostructures with defined geometries and specific functions. It is becoming apparent that Nature's bottom-up approach to functional nanostructures can be mimicked to produce artificial molecules with nanoscaled dimensions and engineered properties. Indeed, examples of artificial nanohelices , nanotubes and molecular motors are starting to be developed. Some of these fascinating chemical systems have intriguing electrochemical and photochemical properties, which can be exploited to manipulate chemical, electrical and optical signals at the molecular level. This tremendous opportunity has led to the development of the molecular equivalent of conventional logic gates. Indeed, simple logic operations can be reproduced with collections of molecules operating in solution. Most of these chemical systems, however, rely on bulk addressing to execute combinational and sequential logic operations. It is essential to devise methods to reproduce these useful functions in solid-state configurations and, eventually, with single molecules. These challenging objectives are stimulating the design of clever devices that interface small assemblies of organic molecules with macroscaled and nanoscaled electrodes. These strategies have already produced rudimentary examples of diodes, switches and transistors based on functional molecular components. The rapid and continuous progress of this exploratory research will, hopefully, lead to an entire generation of molecule-based devices that might ultimately find useful applications in a variety of fields ranging from biomedical research to information technology.

References

  1. 2.1
    D. Voet, J.G. Voet: Biochemistry (Wiley, New York 2010)Google Scholar
  2. 2.2
    K.C. Nicolau, J.S. Chen: Classics in Total Synthesis (Wiley-VCH, Weinheim 2011)Google Scholar
  3. 2.3
    J.W. Steed, J.L. Atwood: Supramolecular Chemistry (Wiley, New York 2009)CrossRefGoogle Scholar
  4. 2.4
    M.M. Harding, U. Koert, J.-M. Lehn, A. Marquis-Rigault, C. Piguet, J. Siegel: Synthesis of unsubstituted and 4,4-substituted oligobipyridines as ligand strands for helicate self-assembly, Helv. Chim. Acta 74, 594–610 (1991)CrossRefGoogle Scholar
  5. 2.5
    J.-M. Lehn, A. Rigault, J. Siegel, B. Harrowfield, B. Chevrier, D. Moras: Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: Structure of an inorganic double helix, Proc. Natl. Acad. Sci. USA 84, 2565–2569 (1987)CrossRefGoogle Scholar
  6. 2.6
    J.-M. Lehn, A. Rigault: Helicates: Tetra- and pentanuclear double helix complexes of Cu(I) and poly(bipyridine) strands, Angew. Chem. Int. Ed. Engl. 27, 1095–1097 (1988)CrossRefGoogle Scholar
  7. 2.7
    J.D. Hartgerink, J.R. Granja, R.A. Milligan, M.R. Ghadiri: Self-assembling peptide nanotubes, J. Am. Chem. Soc. 118, 43–50 (1996)CrossRefGoogle Scholar
  8. 2.8
    M.R. Ghadiri, J.R. Granja, R.A. Milligan, D.E. McRee, N. Khazanovich: Self-assembling organic nanotubes based on a cyclic peptide architecture, Nature 366, 324–327 (1993)CrossRefGoogle Scholar
  9. 2.9
    V. Balzani, A. Credi, M. Venturi: Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley-VCH, Weinheim 2008)CrossRefGoogle Scholar
  10. 2.10
    C.H. Hamann, A. Hamnett, W. Vielstich: Electrochemistry (Wiley-VCH, Weinheim 2007)Google Scholar
  11. 2.11
    S. Fukuzumi: Electron Transfer: Mechanisms and Applications (Wiley-VCH, Weinheim 2016)Google Scholar
  12. 2.12
    V. Balzani, P. Ceroni, A. Juris: Photochemistry and Photophysics: Concepts, Research, Applications (Wiley-VCH, Weinheim 2014)Google Scholar
  13. 2.13
    N.J. Turro, J.C. Scaiano, V. Ramamurthy: Modern Molecular Photochemistry of Organic Molecules (University Science Books, Herndon 2010)Google Scholar
  14. 2.14
    P.R. Ashton, R. Ballardini, V. Balzani, A. Credi, K.R. Dress, E. Ishow, C.J. Kleverlaan, O. Kocian, J.A. Preece, N. Spencer, J.F. Stoddart, M. Venturi, S. Wenger: A photochemically driven molecular-level abacus, Chem. Eur. J. 6, 3558–3574 (2000)CrossRefGoogle Scholar
  15. 2.15
    B.L. Feringa, W.R. Browne (Eds.): Molecular Switches (Wiley-VCH, Weinheim 2011)Google Scholar
  16. 2.16
    M. Irie, Y. Yokoyama, T. Seki (Eds.): New Frontiers in Photochromism (Springer, Tokyo 2013)Google Scholar
  17. 2.17
    J.-P. Deschamps, E. Valderrama, L. Terés: Digital Systems: From Logic Gates to Processors (Springer, New York 2016)Google Scholar
  18. 2.18
    D.R. Smith: Digital Transmission Systems (Springer, New York 2003)Google Scholar
  19. 2.19
    O. Bishop: Electronics: Circuits and Systems (Routledge, Burlington 2011)Google Scholar
  20. 2.20
    F.M. Raymo: Digital processing and communication with molecular switches, Adv. Mater. 14, 401–414 (2002)CrossRefGoogle Scholar
  21. 2.21
    A.P. de Silva: Molecular computation – Molecular logic gets loaded, Nature Mater. 4, 15–16 (2005)CrossRefGoogle Scholar
  22. 2.22
    A. Aviram: Molecules for memory, Logic Amplif, J. Am. Chem. Soc. 110, 5687–5692 (1988)CrossRefGoogle Scholar
  23. 2.23
    A.P. de Silva, H.Q.N. Gunaratne, C.P. McCoy: A molecular photoionic AND gate based on fluorescent signaling, Nature 364, 42–44 (1993)CrossRefGoogle Scholar
  24. 2.24
    M. Asakawa, P.R. Ashton, V. Balzani, A. Credi, G. Mattersteig, O.A. Matthews, M. Montalti, N. Spencer, J.F. Stoddart, M. Venturi: Electrochemically induced molecular motions in pseudorotaxanes: A case of dual-mode (oxidative and reductive) dethreading, Chem. Eur. J. 3, 1992–1996 (1997)CrossRefGoogle Scholar
  25. 2.25
    F.M. Raymo, S. Giordani, A.J.P. White, D.J. Williams: Digital processing with a three-state molecular switch, J. Org. Chem. 68, 4158–4169 (2003)CrossRefGoogle Scholar
  26. 2.26
    F.M. Raymo, S. Giordani: Signal communication between molecular switches, Org. Lett. 3, 3475–3478 (2001)CrossRefGoogle Scholar
  27. 2.27
    F.M. Raymo, S. Giordani: Digital communication through intermolecular fluorescence modulation, Org. Lett. 3, 1833–1836 (2001)CrossRefGoogle Scholar
  28. 2.28
    F.M. Raymo, S. Giordani: Multichannel digital transmission in an optical network of communicating molecules, J. Am. Chem. Soc. 124, 2004–2007 (2002)CrossRefGoogle Scholar
  29. 2.29
    F.M. Raymo, S. Giordani: All-optical processing with molecular switches, Proc. Natl. Acad. Sci. USA 99, 4941–4944 (2002)CrossRefGoogle Scholar
  30. 2.30
    J.C. Cuevas, E. Scheer: Molecular Electronics: An Introduction to Theory and Experiment (World Scientific Publishing, Singapore 2013)Google Scholar
  31. 2.31
    C. Joachim, J.K. Gimzewski, A. Aviram: Electronics using hybrid-molecular and mono-molecular devices, Nature 408, 541–548 (2000)CrossRefGoogle Scholar
  32. 2.32
    J.M. Tour: Molecular electronics. Synthesis and testing of components, Acc. Chem. Res. 33, 791–804 (2000)CrossRefGoogle Scholar
  33. 2.33
    A.R. Pease, J.O. Jeppesen, J.F. Stoddart, Y. Luo, C.P. Collier, J.R. Heath: Switching devices based on interlocked molecules, Acc. Chem. Res. 34, 433–444 (2001)CrossRefGoogle Scholar
  34. 2.34
    R.M. Metzger: Unimoleular electrical rectifiers, Chem. Rev. 103, 3803–3834 (2003)CrossRefGoogle Scholar
  35. 2.35
    W.A. Barlow (Ed.): Langmuir-Blodgett Films (North Holland, Amsterdam 2013)Google Scholar
  36. 2.36
    Y.S. Lee: Self-Assembly and Nanotechnology Systems: Design, Characterization and Applications (Wiley, New York 2011)CrossRefGoogle Scholar
  37. 2.37
    C. Lee, A.J. Bard: Comparative electrochemical studies of N-methyl- N’-hexadecyl viologen monomolecular films formed by irreversible adsorption and the Langmuir-Blodgett method, J. Electroanal. Chem. 239, 441–446 (1988)CrossRefGoogle Scholar
  38. 2.38
    C. Lee, A.J. Bard: Cyclic voltammetry and Langmuir film isotherms of mixed monolayers of N-docosoyl- N’-methyl viologen with arachidic acid, Chem. Phys. Lett. 170, 57–60 (1990)CrossRefGoogle Scholar
  39. 2.39
    M. Fujihira, K. Nishiyama, H. Yamada: Photoelectrochemical responses of optically transparent electrodes modified with Langmuir-Blodgett films consisting of surfactant derivatives of electron donor, acceptor and sensitizer molecules, Thin Solid Films 132, 77–82 (1985)CrossRefGoogle Scholar
  40. 2.40
    M. Fujihira: Photoelectric conversion with Langmuir-Blodgett films. In: Nanostructures Based on Molecular Materials, ed. by W. Göpel, C. Ziegler (VCH, Weinheim 1992) pp. 27–46Google Scholar
  41. 2.41
    C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath: Electronically configurable molecular-based logic gates, Science 285, 391–394 (1999)CrossRefGoogle Scholar
  42. 2.42
    E.W. Wong, C.P. Collier, M. Belohradsky, F.M. Raymo, J.F. Stoddart, J.R. Heath: Fabrication and transport properties of single-molecule-thick electrochemical junctions, J. Am. Chem. Soc. 122, 5831–5840 (2000)CrossRefGoogle Scholar
  43. 2.43
    M. Asakawa, P.R. Ashton, V. Balzani, A. Credi, C. Hamers, G. Mattersteig, M. Montalti, A.N. Shipway, N. Spencer, J.F. Stoddart, M.S. Tolley, M. Venturi, A.J.P. White, D.J. Williams: A chemically and electrochemically switchable [2]catenane incorporating a tetrathiafulvalene unit, Angew. Chem. Int. Ed. 37, 333–337 (1998)CrossRefGoogle Scholar
  44. 2.44
    V. Balzani, A. Credi, G. Mattersteig, O.A. Matthews, F.M. Raymo, J.F. Stoddart, M. Venturi, A.J.P. White, D.J. Williams: Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs, J. Org. Chem. 65, 1924–1936 (2000)CrossRefGoogle Scholar
  45. 2.45
    M. Asakawa, M. Higuchi, G. Mattersteig, T. Nakamura, A.R. Pease, F.M. Raymo, T. Shimizu, J.F. Stoddart: Current/voltage characteristics of monolayers of redox-switchable [2]catenanes on gold, Adv. Mater. 12, 1099–1102 (2000)CrossRefGoogle Scholar
  46. 2.46
    C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, J.R. Heath: A [2]catenane based solid-state electronically reconfigurable switch, Science 289, 1172–1175 (2000)CrossRefGoogle Scholar
  47. 2.47
    C.P. Collier, J.O. Jeppesen, Y. Luo, J. Perkins, E.W. Wong, J.R. Heath, J.F. Stoddart: Molecular-based electronically switchable tunnel junction devices, J. Am. Chem. Soc. 123, 12632–12641 (2001)CrossRefGoogle Scholar
  48. 2.48
    J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour: Large on-off ratios and negative differential resistance in a molecular electronic device, Science 286, 1550–1552 (1999)CrossRefGoogle Scholar
  49. 2.49
    M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour: Molecular random access memory cell, Appl. Phys. Lett. 78, 3735–3737 (2001)CrossRefGoogle Scholar
  50. 2.50
    D.I. Gittins, D. Bethell, R.J. Nichols, D.J. Schiffrin: Redox-controlled multilayers of discrete gold particles: A novel electroactive nanomaterial, Adv. Mater. 9, 737–740 (1999)CrossRefGoogle Scholar
  51. 2.51
    D.I. Gittins, D. Bethell, R.J. Nichols, D.J. Schiffrin: Diode-like electron transfer across nanostructured films containing a redox ligand, J. Mater. Chem. 10, 79–83 (2000)CrossRefGoogle Scholar
  52. 2.52
    D.I. Gittins, D. Bethell, D.J. Schiffrin, R.J. Nichols: A nanometer-scale electronic switch consisting of a metal cluster and redox-addressable groups, Nature 408, 67–69 (2000)CrossRefGoogle Scholar
  53. 2.53
    A.N. Shipway, M. Lahav, I. Willner: Nanostructured gold colloid electrodes, Adv. Mater. 12, 993–998 (2000)CrossRefGoogle Scholar
  54. 2.54
    A.N. Shipway, M. Lahav, R. Blonder, I. Willner: Bis-bipyridinium cyclophane receptor–Au nanoparticle superstructure for electrochemical sensing applications, Chem. Mater. 11, 13–15 (1999)CrossRefGoogle Scholar
  55. 2.55
    M. Lahav, A.N. Shipway, I. Willner, M.B. Nielsen, J.F. Stoddart: An enlarged bis-bipyridinum cyclophane–Au nanoparticle superstructure for selective electrochemical sensing applications, J. Electroanal. Chem. 482, 217–221 (2000)CrossRefGoogle Scholar
  56. 2.56
    R.E. Gillard, F.M. Raymo, J.F. Stoddart: Controlling self-assembly, Chem. Eur. J. 3, 1933–1940 (1997)CrossRefGoogle Scholar
  57. 2.57
    F.M. Raymo, J.F. Stoddart: From supramolecular complexes to interlocked molecular compounds, Chemtracts – Org. Chem. 11, 491–511 (1998)Google Scholar
  58. 2.58
    M. Lahav, T. Gabriel, A.N. Shipway, I. Willner: Assembly of a Zn(II)-porphyrin-bipyridinium dyad and Au-nanoparticle superstructures on conductive surfaces, J. Am. Chem. Soc. 121, 258–259 (1999)CrossRefGoogle Scholar
  59. 2.59
    M. Lahav, V. Heleg-Shabtai, J. Wasserman, E. Katz, I. Willner, H. Durr, Y. Hu, S.H. Bossmann: Photoelectrochemistry with integrated photosensitizer-electron acceptor Au-nanoparticle arrays, J. Am. Chem. Soc. 122, 11480–11487 (2000)CrossRefGoogle Scholar
  60. 2.60
    G. Will, S.N. Rao, D. Fitzmaurice: Heterosupramolecular optical write-read-erase device, J. Mater. Chem. 9, 2297–2299 (1999)CrossRefGoogle Scholar
  61. 2.61
    A. Merrins, C. Kleverlann, G. Will, S.N. Rao, F. Scandola, D. Fitzmaurice: Time-resolved optical spectroscopy of heterosupramolecular assemblies based on nanostructured TiO2films modified by chemisorption of covalently linked ruthenium and viologen complex components, J. Phys. Chem. B 105, 2998–3004 (2001)CrossRefGoogle Scholar
  62. 2.62
    H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen: Nanomechanical oscillations in a single C60transistor, Nature 407, 57–60 (2000)CrossRefGoogle Scholar
  63. 2.63
    W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park: Kondo resonance in a single-molecule transistor, Nature 417, 725–729 (2002)CrossRefGoogle Scholar
  64. 2.64
    J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, D.C. Ralph: Coulomb blockade and the Kondo effect in single-atom transistors, Nature 417, 722–725 (2002)CrossRefGoogle Scholar
  65. 2.65
    C.Z. Li, H.X. He, N.J. Tao: Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching, Appl. Phys. Lett. 77, 3995–3997 (2000)CrossRefGoogle Scholar
  66. 2.66
    H. He, J. Zhu, N.J. Tao, L.A. Nagahara, I. Amlani, R. Tsui: A conducting polymer nanojunction switch, J. Am. Chem. Soc. 123, 7730–7731 (2001)CrossRefGoogle Scholar
  67. 2.67
    A. Bogozi, O. Lam, H. He, C. Li, N.J. Tao, L.A. Nagahara, I. Amlani, R. Tsui: Molecular adsorption onto metallic quantum wires, J. Am. Chem. Soc. 123, 4585–4590 (2001)CrossRefGoogle Scholar
  68. 2.68
    A. Bezryadin, C.N. Lau, M. Tinkham: Quantum suppression of superconductivity in ultrathin nanowires, Nature 404, 971–974 (2000)CrossRefGoogle Scholar
  69. 2.69
    D. Porath, A. Bezryadin, S. de Vries, C. Dekker: Direct measurement of electrical transport through DNA molecules, Nature 403, 635–638 (2000)CrossRefGoogle Scholar
  70. 2.70
    S.J. Tans, M.H. Devoret, H. Dai, A. Thess, E.E. Smalley, L.J. Geerligs, C. Dekker: Individual single-wall carbon nanotubes as quantum wires, Nature 386, 474–477 (1997)CrossRefGoogle Scholar
  71. 2.71
    A.F. Morpurgo, J. Kong, C.M. Marcus, H. Dai: Gate-controlled superconducting proximity effect in carbon nanotubes, Nature 286, 263–265 (1999)Google Scholar
  72. 2.72
    J. Nygård, D.H. Cobden, P.E. Lindelof: Kondo physics in carbon nanotubes, Nature 408, 342–346 (2000)CrossRefGoogle Scholar
  73. 2.73
    W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry-Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)CrossRefGoogle Scholar
  74. 2.74
    M.S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen: Crossed nanotube junctions, Science 288, 494–497 (2000)Google Scholar
  75. 2.75
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289, 94–97 (2000)CrossRefGoogle Scholar
  76. 2.76
    A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Logic circuits with carbon nanotube transistors, Science 294, 1317–1320 (2001)CrossRefGoogle Scholar
  77. 2.77
    M.C. Petty: Langmuir-Blodgett Films: An Introduction (Cambridge Univ. Press, Cambridge 1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Françisco M. Raymo
    • 1
  1. 1.Dept. of ChemistryUniversity of MiamiCoral GablesUSA

Personalised recommendations