Advertisement

Microfluidic Micro/Nano Droplets

  • Gopakumar Kamalakshakurup
  • Derek Vallejo
  • Abraham Lee
Part of the Springer Handbooks book series (SHB)

Abstract

Microfluidic droplet technology has evolved rapidly since the first microfluidic droplet generator was reported over a decade ago. It has subsequently branched out and emerged as a practical solution to enhance the capabilities of many other fields, including, but not limited to: high-throughput screening, biosensing, drug delivery and synthetic biology. In this chapter, we will report on recent advancements in droplet microfluidic technologies that have emerged since Teh et al.'s comprehensive 2007 review. We begin with a brief history of droplet microfluidics and introduce methods of droplet production, manipulation, and sensing methodologies. The remainder of the chapter is dedicated to design considerations for various droplet production configurations, concluding with a discussion on applications, trends and the general direction that the field is headed.

References

  1. 17.1
    G.M. Whitesides: The origins and the future of microfluidics, Nature 442(7101), 368–373 (2006)CrossRefGoogle Scholar
  2. 17.2
    T. Thorsen, S.J. Maerkl, S.R. Quake: Microfluidic large-scale integration, Science 298(5593), 580–584 (2002)CrossRefGoogle Scholar
  3. 17.3
    J. Melin, S.R. Quake: Microfluidic large-scale integration: The evolution of design rules for biological automation, Annu. Rev. Biophys. Biomol. Struct. 36(1), 213–231 (2007)CrossRefGoogle Scholar
  4. 17.4
    H. Song, D.L. Chen, R.F. Ismagilov: Reactions in droplets in microfluidic channels, Angew. Chem. Int. Ed. 45(44), 7336–7356 (2006)CrossRefGoogle Scholar
  5. 17.5
    T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake: Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86(18), 4163–4166 (2001)CrossRefGoogle Scholar
  6. 17.6
    B. Zheng, J.D. Tice, R.F. Ismagilov: Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays, Anal. Chem. 76(17), 4977–4982 (2004)CrossRefGoogle Scholar
  7. 17.7
    S.L. Anna, N. Bontoux, H.A. Stone: Formation of dispersions using flow focusing in microchannels, Appl. Phys. Lett. 82(3), 364 (2003)CrossRefGoogle Scholar
  8. 17.8
    J. Shim, R.T. Ranasinghe, C.A. Smith, S.M. Ibrahim, F. Hollfelder, W.T.S. Huck, D. Klenerman, C. Abell: Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays, ACS Nano 7(7), 5955–5964 (2013)CrossRefGoogle Scholar
  9. 17.9
    H.-H. Jeong, V.R. Yelleswarapu, S. Yadavali, D. Issadore, D. Lee: Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3-D MED), Lab. Chip 15(23), 4387–4392 (2015)CrossRefGoogle Scholar
  10. 17.10
    Y. Xia, G.M. Whitesides: Soft lithography, Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)CrossRefGoogle Scholar
  11. 17.11
    Y.-C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, A.P. Lee: Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting, Lab. Chip 4(4), 292 (2004)CrossRefGoogle Scholar
  12. 17.12
    X. Niu, S. Gulati, J.B. Edel, A.J. deMello: Pillar-induced droplet merging in microfluidic circuits, Lab. Chip 8(11), 1837 (2008)CrossRefGoogle Scholar
  13. 17.13
    P. Singh, N. Aubry: Transport and deformation of droplets in a microdevice using dielectrophoresis, Electrophoresis 28(4), 644–657 (2007)CrossRefGoogle Scholar
  14. 17.14
    C. Priest, S. Herminghaus, R. Seemann: Controlled electrocoalescence in microfluidics: Targeting a single lamella, Appl. Phys. Lett. 89(13), 134101 (2006)CrossRefGoogle Scholar
  15. 17.15
    J. Köhler, T. Henkel, A. Grodrian, T. Kirner, M. Roth, K. Martin, J. Metze: Digital reaction technology by micro segmented flow–components, concepts and applications, Chem. Eng. J. 101(1–3), 201–216 (2004)CrossRefGoogle Scholar
  16. 17.16
    R.M. Lorenz, J.S. Edgar, G.D.M. Jeffries, D.T. Chiu: Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets, Anal. Chem. 78(18), 6433–6439 (2006)CrossRefGoogle Scholar
  17. 17.17
    D. Link, S. Anna, D. Weitz, H. Stone: Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. (2004) doi: 10.1103/PhysRevLett.92.054503
  18. 17.18
    D.N. Adamson, D. Mustafi, J.X.J. Zhang, B. Zheng, R.F. Ismagilov: Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices, Lab. Chip 6(9), 1178 (2006)CrossRefGoogle Scholar
  19. 17.19
    S.K. Cho, H. Moon, C.-J. Kim: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. Microelectromech. Syst. 12(1), 70–80 (2003)CrossRefGoogle Scholar
  20. 17.20
    J.J. Agresti, E. Antipov, A.R. Abate, K. Ahn, A.C. Rowat, J.-C. Baret, M. Marquez, A.M. Klibanov, A.D. Griffiths, D.A. Weitz: Ultrahigh-throughput screening in drop-based microfluidics for directed evolution, Proc. Natl. Acad. Sci. 107(9), 4004–4009 (2010)CrossRefGoogle Scholar
  21. 17.21
    J. Lim, P. Gruner, M. Konrad, J.-C. Baret: Micro-optical lens array for fluorescence detection in droplet-based microfluidics, Lab. Chip 13(8), 1472 (2013)CrossRefGoogle Scholar
  22. 17.22
    M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, S.K.Y. Tang: Optofluidic ultrahigh-throughput detection of fluorescent drops, Lab. Chip 15(6), 1417–1423 (2015)CrossRefGoogle Scholar
  23. 17.23
    D.-K. Kang, M.M. Ali, K. Zhang, S.S. Huang, E. Peterson, M.A. Digman, E. Gratton, W. Zhao: Rapid detection of single bacteria in unprocessed blood using integrated comprehensive droplet digital detection, Nat. Commun. 5, 5427 (2014)CrossRefGoogle Scholar
  24. 17.24
    S. Liu, Y. Gu, R.B. Le Roux, S.M. Matthews, D. Bratton, K. Yunus, A.C. Fisher, W.T.S. Huck: The electrochemical detection of droplets in microfluidic devices, Lab. Chip 8(11), 1937 (2008)CrossRefGoogle Scholar
  25. 17.25
    L.M. Fidalgo, G. Whyte, B.T. Ruotolo, J.L.P. Benesch, F. Stengel, C. Abell, C.V. Robinson, W.T.S. Huck: Coupling microdroplet microreactors with mass spectrometry: Reading the contents of single droplets online, Angew. Chem. Int. Ed. 48(20), 3665–3668 (2009)CrossRefGoogle Scholar
  26. 17.26
    X.Z. Niu, B. Zhang, R.T. Marszalek, O. Ces, J.B. Edel, D.R. Klug, A.J. deMello: Droplet-based compartmentalization of chemically separated components in two-dimensional separations, Chem. Commun. (2009) doi: 10.1039/b918100h
  27. 17.27
    M.P. Cecchini, J. Hong, C. Lim, J. Choo, T. Albrecht, A.J. deMello, J.B. Edel: Ultrafast surface enhanced resonance raman scattering detection in droplet-based microfluidic systems, Anal. Chem. 83(8), 3076–3081 (2011)CrossRefGoogle Scholar
  28. 17.28
    Y.-C. Tan, Y.L. Ho, A.P. Lee: Microfluidic sorting of droplets by size, Microfluid. Nanofluidics 4(4), 343–348 (2007)CrossRefGoogle Scholar
  29. 17.29
    M. Chabert, J.-L. Viovy: Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells, Proc. Natl. Acad. Sci. 105(9), 3191–3196 (2008)CrossRefGoogle Scholar
  30. 17.30
    H.N. Joensson, M. Uhlén, H.A. Svahn: Droplet size based separation by deterministic lateral displacement–separating droplets by cell-induced shrinking, Lab. Chip 11(7), 1305 (2011)CrossRefGoogle Scholar
  31. 17.31
    A.C. Hatch, A. Patel, N.R. Beer, A.P. Lee: Passive droplet sorting using viscoelastic flow focusing, Lab. Chip 13(7), 1308 (2013)CrossRefGoogle Scholar
  32. 17.32
    J.-C. Baret, O.J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M.L. Samuels, J.B. Hutchison, J.J. Agresti, D.R. Link, D.A. Weitz, A.D. Griffiths: Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity, Lab. Chip 9(13), 1850 (2009)CrossRefGoogle Scholar
  33. 17.33
    K. Ahn, C. Kerbage, T.P. Hunt, R.M. Westervelt, D.R. Link, D.A. Weitz: Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices, Appl. Phys. Lett. 88(2), 24104 (2006)CrossRefGoogle Scholar
  34. 17.34
    T. Franke, A.R. Abate, D.A. Weitz, A. Wixforth: Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices, Lab. Chip 9(18), 2625 (2009)CrossRefGoogle Scholar
  35. 17.35
    A.R. Abate, J.J. Agresti, D.A. Weitz: Microfluidic sorting with high-speed single-layer membrane valves, Appl. Phys. Lett. 96(20), 203509 (2010)CrossRefGoogle Scholar
  36. 17.36
    C.N. Baroud, M.R. de Saint Vincent, J.-P. Delville: An optical toolbox for total control of droplet microfluidics, Lab. Chip 7(8), 1029 (2007)CrossRefGoogle Scholar
  37. 17.37
    S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee: Droplet microfluidics, Lab. Chip 8(2), 198 (2008)CrossRefGoogle Scholar
  38. 17.38
    G.F. Christopher, S.L. Anna: Microfluidic methods for generating continuous droplet streams, J. Phys. Appl. Phys. 40(19), R319–R336 (2007)CrossRefGoogle Scholar
  39. 17.39
    M. Baker: Digital PCR hits its stride, Nat. Methods 9(6), 541–544 (2012)CrossRefGoogle Scholar
  40. 17.40
    A.R. Abate, T. Hung, R.A. Sperling, P. Mary, A. Rotem, J.J. Agresti, M.A. Weiner, D.A. Weitz: DNA sequence analysis with droplet-based microfluidics, Lab. Chip 13(24), 4864 (2013)CrossRefGoogle Scholar
  41. 17.41
    S. Abalde-Cela, A. Gould, X. Liu, E. Kazamia, A.G. Smith, C. Abell: High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform, J. R. Soc. Interface 12(106), 20150216–20150216 (2015)CrossRefGoogle Scholar
  42. 17.42
    P.S. Dittrich, A. Manz: Lab-on-a-chip: Microfluidics in drug discovery, Nat. Rev. Drug Discov. 5(3), 210–218 (2006)CrossRefGoogle Scholar
  43. 17.43
    E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels: Droplet microfluidic technology for single-cell high-throughput screening, Proc. Natl. Acad. Sci. 106(34), 14195–14200 (2009)CrossRefGoogle Scholar
  44. 17.44
    A.C. Larsen, M.R. Dunn, A. Hatch, S.P. Sau, C. Youngbull, J.C. Chaput: A general strategy for expanding polymerase function by droplet microfluidics, Nat. Commun. 7, 11235 (2016)CrossRefGoogle Scholar
  45. 17.45
    P.B. Umbanhowar, V. Prasad, D.A. Weitz: Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir 16(2), 347–351 (2000)CrossRefGoogle Scholar
  46. 17.46
    C. Cramer, P. Fischer, E.J. Windhab: Drop formation in a co-flowing ambient fluid, Chem. Eng. Sci. 59(15), 3045–3058 (2004)CrossRefGoogle Scholar
  47. 17.47
    G.F. Christopher, N.N. Noharuddin, J.A. Taylor, S.L. Anna: Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Phys. Rev. E 78(3), 36317 (2008)CrossRefGoogle Scholar
  48. 17.48
    J. Husny, J.J. Cooper-White: The effect of elasticity on drop creation in T-shaped microchannels, J. Non-Newton. Fluid Mech. 137(1–3), 121–136 (2006)CrossRefGoogle Scholar
  49. 17.49
    J. Xu, G. Luo, G. Chen, J. Wang: Experimental and theoretical approaches on droplet formation from a micrometer screen hole, J. Membr. Sci. 266(1–2), 121–131 (2005)CrossRefGoogle Scholar
  50. 17.50
    J.D. Tice, A.D. Lyon, R.F. Ismagilov: Effects of viscosity on droplet formation and mixing in microfluidic channels, Anal. Chim. Acta 507(1), 73–77 (2004)CrossRefGoogle Scholar
  51. 17.51
    P. Garstecki, H. Stone, G. Whitesides: Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions, Phys. Rev. Lett. (2005) doi: 10.1103/PhysRevLett.94.164501
  52. 17.52
    P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides: Formation of droplets and bubbles in a microfluidic T-junction–scaling and mechanism of break-up, Lab. Chip 6(3), 437 (2006)CrossRefGoogle Scholar
  53. 17.53
    S.L. Anna, H.C. Mayer: Microscale tipstreaming in a microfluidic flow focusing device, Phys. Fluids 18(12), 121512 (2006)CrossRefMATHGoogle Scholar
  54. 17.54
    A.S. Utada: Monodisperse double emulsions generated from a microcapillary device, Science 308(5721), 537–541 (2005)CrossRefGoogle Scholar
  55. 17.55
    T. Ward, M. Faivre, M. Abkarian, H.A. Stone: Microfluidic flow focusing: Drop size and scaling in pressureversus flow-rate-driven pumping, Electrophoresis 26(19), 3716–3724 (2005)CrossRefGoogle Scholar
  56. 17.56
    C. Zhou, P. Yue, J.J. Feng: Formation of simple and compound drops in microfluidic devices, Phys. Fluids 18(9), 92105 (2006)CrossRefGoogle Scholar
  57. 17.57
    B. Beulen, J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff, R. van Dongen: Flows on the nozzle plate of an inkjet printhead, Exp. Fluids 42(2), 217–224 (2007)CrossRefGoogle Scholar
  58. 17.58
    H. Willaime, V. Barbier, L. Kloul, S. Maine, P. Tabeling: Arnold tongues in a microfluidic drop emitter, Phys. Rev. Lett. (2006) doi: 10.1103/PhysRevLett.96.054501
  59. 17.59
    O. Ozen, N. Aubry, D.T. Papageorgiou, P.G. Petropoulos: Monodisperse drop formation in square microchannels, Phys. Rev. Lett. (2006) doi: 10.1103/PhysRevLett.96.144501
  60. 17.60
    D.T. Chiu, R.M. Lorenz, G.D.M. Jeffries: Droplets for ultrasmall-volume analysis, Anal. Chem. 81(13), 5111–5118 (2009) doi: 10.1021/ac900306q CrossRefGoogle Scholar
  61. 17.61
    A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J.B. Edel, A.J. deMello: Microdroplets: A sea of applications?, Lab. Chip 8(8), 1244 (2008)CrossRefGoogle Scholar
  62. 17.62
    A.K. Price, B.M. Paegel: Discovery in droplets, Anal. Chem. 88(1), 339–353 (2016)CrossRefGoogle Scholar
  63. 17.63
    I. Shestopalov, J.D. Tice, R.F. Ismagilov: Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system, Lab. Chip 4(4), 316 (2004)CrossRefGoogle Scholar
  64. 17.64
    V. Noireaux, A. Libchaber: A vesicle bioreactor as a step toward an artificial cell assembly, Proc. Natl. Acad. Sci. 101(51), 17669–17674 (2004)CrossRefGoogle Scholar
  65. 17.65
    B. Ahmed, D. Barrow, T. Wirth: Enhancement of reaction rates by segmented fluid flow in capillary scale reactors, Adv. Synth. Catal. 348(9), 1043–1048 (2006)CrossRefGoogle Scholar
  66. 17.66
    J.R. Burns, C. Ramshaw: The intensification of rapid reactions in multiphase systems using slug flow in capillaries, Lab. Chip 1(1), 10 (2001)CrossRefGoogle Scholar
  67. 17.67
    K.-I. Sotowa, K. Irie, T. Fukumori, K. Kusakabe, S. Sugiyama: Droplet formation by the collision of two aqueous solutions in a microchannel and application to particle synthesis, Chem. Eng. Technol. 30(3), 383–388 (2007)CrossRefGoogle Scholar
  68. 17.68
    H. Song, H.-W. Li, M.S. Munson, T.G. Van Ha, R.F. Ismagilov: On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system, Anal. Chem. 78(14), 4839–4849 (2006)CrossRefGoogle Scholar
  69. 17.69
    Z.T. Cygan, J.T. Cabral, K.L. Beers, E.J. Amis: Microfluidic platform for the generation of organic-phase microreactors, Langmuir 21(8), 3629–3634 (2005)CrossRefGoogle Scholar
  70. 17.70
    A. Huebner, M. Srisa-Art, D. Holt, C. Abell, F. Hollfelder, A.J. deMello, J.B. Edel: Quantitative detection of protein expression in single cells using droplet microfluidics, Chem. Commun. (2007) doi: 10.1039/b618570c
  71. 17.71
    M.S. Long, C.D. Jones, M.R. Helfrich, L.K. Mangeney-Slavin, C.D. Keating: Dynamic microcompartmentation in synthetic cells, Proc. Natl. Acad. Sci. 102(17), 5920–5925 (2005)CrossRefGoogle Scholar
  72. 17.72
    V. Taly, D. Pekin, A.E. Abed, P. Laurent-Puig: Detecting biomarkers with microdroplet technology, Trends Mol. Med. 18(7), 405–416 (2012)CrossRefGoogle Scholar
  73. 17.73
    W. Wang, Z.-X. Li, R. Luo, S.-H. Lü, A.-D. Xu, Y.-J. Yang: Droplet-based micro oscillating-flow PCR chip, J. Micromech. Microeng. 15(8), 1369–1377 (2005)CrossRefGoogle Scholar
  74. 17.74
    B.J. Hindson, K.D. Ness, D.A. Masquelier, P. Belgrader, N.J. Heredia, A.J. Makarewicz, I.J. Bright, M.Y. Lucero, A.L. Hiddessen, T.C. Legler, T.K. Kitano, M.R. Hodel, J.F. Petersen, P.W. Wyatt, E.R. Steenblock, P.H. Shah, L.J. Bousse, C.B. Troup, J.C. Mellen, D.K. Wittmann, N.G. Erndt, T.H. Cauley, R.T. Koehler, A.P. So, S. Dube, K.A. Rose, L. Montesclaros, S. Wang, D.P. Stumbo, S.P. Hodges, S. Romine, F.P. Milanovich, H.E. White, J.F. Regan, G.A. Karlin-Neumann, C.M. Hindson, S. Saxonov, B.W. Colston: High-throughput droplet digital PCR system for absolute quantitation of DNA copy number, Anal. Chem. 83(22), 8604–8610 (2011)CrossRefGoogle Scholar
  75. 17.75
    T. Hatakeyama, D.L. Chen, R.F. Ismagilov: Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS, J. Am. Chem. Soc. 128(8), 2518–2519 (2006)CrossRefGoogle Scholar
  76. 17.76
    A.R. Wheeler, H. Moon, C.A. Bird, R.R.O. Loo, C.-J. Kim, J.A. Loo, R.L. Garrell: Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS, Anal. Chem. 77(2), 534–540 (2005)CrossRefGoogle Scholar
  77. 17.77
    B.T.C. Lau, C.A. Baitz, X.P. Dong, C.L. Hansen: A complete microfluidic screening platform for rational protein crystallization, J. Am. Chem. Soc. 129(3), 454–455 (2007)CrossRefGoogle Scholar
  78. 17.78
    H. Song, R.F. Ismagilov: Millisecond kinetics on a microfluidic chip using nanoliters of reagents, J. Am. Chem. Soc. 125(47), 14613–14619 (2003)CrossRefGoogle Scholar
  79. 17.79
    B. Kintses, C. Hein, M.F. Mohamed, M. Fischlechner, F. Courtois, C. Lainé, F. Hollfelder: Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution, Chem. Biol. 19(8), 1001–1009 (2012)CrossRefGoogle Scholar
  80. 17.80
    D.J. Eastburn, A. Sciambi, A.R. Abate: Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops, Anal. Chem. 85(16), 8016–8021 (2013)CrossRefGoogle Scholar
  81. 17.81
    E.Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A.R. Bialas, N. Kamitaki, E.M. Martersteck, J.J. Trombetta, D.A. Weitz, J.R. Sanes, A.K. Shalek, A. Regev, S.A. McCarroll: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell 161(5), 1202–1214 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Gopakumar Kamalakshakurup
    • 1
  • Derek Vallejo
    • 1
  • Abraham Lee
    • 2
  1. 1.Dept. of Biomedical EngineeringUniversity of California IrvineIrvineUSA
  2. 2.Dept. of Biomedical EngineeringUniversity of California IrvineIrvineUSA

Personalised recommendations