MEMS/NEMS Devices and Applications

  • Philip X.-L. Feng
  • Darrin J. Young
  • Christian A. Zorman
Part of the Springer Handbooks book series (SHB)


Microelectromechanical systems (MEMS) have played key roles in many important areas, for example, transportation, communication, automated manufacturing, environmental monitoring, healthcare, defense systems, and a wide range of consumer products. MEMS are inherently small, thus offering attractive characteristics such as reduced size, weight, and power dissipation and improved speed and precision compared to their macroscopic counterparts. Integrated circuits (IC ) fabrication technology has been the primary enabling technology for MEMS besides a few special etching, bonding and assembly techniques. Microfabrication provides a powerful tool for batch processing and miniaturizing electromechanical devices and systems to a dimensional scale that is not accessible by conventional machining techniques. As IC fabrication technology continues to scale toward deep submicrometer and nanometer feature sizes, a variety of nanoelectromechanical systems (NEMS) have been rapidly emerging. Nanoscale mechanical devices and systems integrated with nanoelectronics will open a vast number of new exploratory research areas in science and engineering. NEMS will most likely serve as an enabling technology, merging engineering with the fundamental physics, quantum science, and life sciences in ways that are not currently feasible with microscale tools and technologies.

MEMS has been applied to a wide range of fields. Hundreds of microdevices have been developed for specific applications. It is thus difficult to provide an overview covering every aspect of the topic. In this chapter, key aspects of MEMS technology and applications are illustrated by selecting a few demonstrative device examples, such as pressure sensors, inertial sensors, optical and wireless communication devices. Microstructure examples with dimensions on the order of submicrometer are presented with fabrication technologies for emerging NEMS applications.

Although MEMS has experienced significant growth over the past decade, many challenges still remain. In broad terms, these challenges can be grouped into three general categories: (1) fabrication challenges; (2) packaging challenges; and (3) application challenges. Challenges in these areas will, in large measure, determine the commercial success of a particular MEMS device in both technical and economic terms. This chapter presents a brief discussion of some of these challenges as well as possible approaches to addressing them.


  1. 13.1
    M. Mehregany, S.F. Bart, L.S. Tavrow, J.H. Lang, S.D. Senturia: Principles in design and microfabrication of variable-capacitance side-drive motors, J. Vac. Sci. Tech. A 8, 3614–3624 (1990)CrossRefGoogle Scholar
  2. 13.2
    Y.-C. Tai, R.S. Muller: IC-processed electrostatic synchronous micromotors, Sens. Actuators 20, 49–55 (1989)CrossRefGoogle Scholar
  3. 13.3
    J.J. Sniegowski, S.L. Miller, G.F. LaVigne, M.S. Roders, P.J. McWhorter: Monolithic geared-mechanisms driven by a polysilicon surface-micromachined on-chip electrostatic microengine. In: IEEE Solid-State Sens. Actuators Workshop (1996) pp. 178–182Google Scholar
  4. 13.4
    G.T.A. Kovacs: Micromachined Transducer Sourcebook (McGraw-Hill, Boston 1998)Google Scholar
  5. 13.5
    S.D. Senturia: Microsystem Design (Kluwer Academic Publishers, New York 2001)Google Scholar
  6. 13.6
    J.E. Gragg, W.E. McCulley, W.B. Newton, C.E. Derrington: Compensation and calibration of a monolithic four terminal silicon pressure transducer. In: IEEE Solid-State Sens. Actuators Workshop (1984) pp. 21–27Google Scholar
  7. 13.7
    Y. Wang, M. Esashi: A novel electrostatic servo capacitive vacuum sensor. In: IEEE Int. Conf. Solid-State Sens. Actuators (1997) pp. 1457–1460Google Scholar
  8. 13.8
    W.H. Ko, Q. Wang: Touch mode capacitive pressure sensors, Sens. Actuators 75, 242–251 (1999)CrossRefGoogle Scholar
  9. 13.9
    H. Kapels, T. Scheiter, C. Hierold, R. Aigner, J. Binder: Cavity pressure determination and leakage testing for sealed surface micromachined membranes: a novel on-wafer test method. In: Proc. 11th Annu. Int. Workshop Micro Electro Mech. Syst. (MEMS98), January 25–29, Heidelberg (1998) pp. 550–555 doi: 10.1109/MEMSYS.1998.659817 Google Scholar
  10. 13.10
    J.M. Bustillo, R.T. Howe, R.S. Muller: Surface micromachining for microelectromechanical systems, Proc. IEEE 86(8), 1552–1574 (1998)CrossRefGoogle Scholar
  11. 13.11
    J.H. Smith, S. Montague, J.J. Sniegowski, P.J. McWhorter: Embedded micromechanical devices for the monolithic integration of MEMS with CMOS, IEEE Int. Electron Dev. Meet. (1993) doi: 10.2172/114489
  12. 13.12
    T.A. Core, W.K. Tsang, S.J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol. 36(10), 39–47 (1993)Google Scholar
  13. 13.13
    H. Kapels, R. Aigner, C. Kolle: Monolithic surface-micromachined sensor system for high pressure applications. In: Transducers ’01 Eurosensors XV, ed. by E. Obermeier (Springer, Berlin, Heidelberg 2001) pp. 56–59CrossRefGoogle Scholar
  14. 13.14
    C. Lu, M. Lemkin, B.E. Boser: A monolithic surface micromachined accelerometer with digital output, IEEE J. Solid-State Circuits 30(12), 160–161 (1995)CrossRefGoogle Scholar
  15. 13.15
    N. Yazdi, K. Najafi: An all-silicon single-wafer fabrication technology for precision microaccelerometers. In: IEEE Int. Conf. Solid-State Sens. Actuators (1997) pp. 1181–1184Google Scholar
  16. 13.16
    M. Lemkin, M.A. Ortiz, N. Wongkomet, B.E. Boser, J.H. Smith: A 3-axis surface micromachined σδ accelerometer. In: IEEE Int. Solid-State Circuits Conf., 1997. Dig. Tech. Pap. 43rd ISSCC (1997) pp. 202–203CrossRefGoogle Scholar
  17. 13.17
    T.B. Gabrielson: Mechanical-thermal noise in micromachined acoustic and vibration sensors, IEEE Trans. Electron Devices 40(5), 903–909 (1993)CrossRefGoogle Scholar
  18. 13.18
    W.A. Clark, R.T. Howe: Surface micromachined z-axis vibratory rate gyroscope. In: IEEE Solid-State Sens. Actuators Workshop (1996) pp. 283–287Google Scholar
  19. 13.19
    T. Juneau, A.P. Pisano: Micromachined dual input axis angular rate sensor. In: Solid-State Sens. Actuators Workshop (IEEE, Cleveland Heights 1996) pp. 299–302Google Scholar
  20. 13.20
    R.S. Muller, K.Y. Lau: Surface-micromachined microoptical elements and systems, Proc. IEEE 86(8), 1705–1720 (1998)CrossRefGoogle Scholar
  21. 13.21
    L.J. Hornbeck: Current status of the digital micromirror device (DMD) for projection television applications. In: IEEE Int. Electron Devices Meet (1993) pp. 381–384CrossRefGoogle Scholar
  22. 13.22
    P.F. Van Kessel, L.J. Hornbeck, R.E. Meier, M.R. Douglass: A MEMS-based projection display, Proc. IEEE 86(8), 1687–1704 (1998)CrossRefGoogle Scholar
  23. 13.23
    M.J. Daneman, N.C. Tien, O. Solgaard, K.Y. Lau, R.S. Muller: Linear vibromotor-actuated micromachined microreflector for integrated optical systems. In: IEEE Solid-State Sens. Actuators Workshop (1996) pp. 109–112Google Scholar
  24. 13.24
    M.S. Cohen, M.F. Cina, E. Bassous, M.M. Opyrsko, J.L. Speidell, F.J. Canora, M.J. DeFranza: Packaging of high density fiber/laser modules using passive alignment techniques, IEEE Trans. Comp. Hybrids Manuf. Technol. 15, 944–954 (1992)CrossRefGoogle Scholar
  25. 13.25
    M.J. Wale, C. Edge: Self-aligned flip-chip assembly of photonic devices with electrical and optical connections, IEEE Trans. Comp. Hybrids Manuf. Technol 13, 780–786 (1990)CrossRefGoogle Scholar
  26. 13.26
    K.S.J. Pister, M.W. Judy, S.R. Burgett, R.S. Fearing: Microfabricated hinges, Sens. Actuators (A) 33(3), 249–256 (1992)CrossRefGoogle Scholar
  27. 13.27
    O. Solgaard, M. Daneman, N.C. Tien, A. Friedberger, R.S. Muller, K.Y. Lau: Optoelectronic packaging using silicon surface-micromachined alignment mirrors, IEEE Photon. Technol. Lett. 7(1), 41–43 (1995)CrossRefGoogle Scholar
  28. 13.28
    S.S. Lee, L.S. Huang, C.J. Kim, M.C. Wu: 2x2 MEMS fiber optic switches with silicon sub-mount for low-cost packaging. In: IEEE Solid-State Sens. Actuators Workshop (1998) pp. 281–284Google Scholar
  29. 13.29
    T. Akiyama, H. Fujita: A quantitative analysis of scratch drive actuator using buckling motion. In: Proc. Micro Electro Mech. Syst., MEMS (1995) pp. 310–315Google Scholar
  30. 13.30
    V.A. Aksyuk, F. Pardo, D.J. Bishop: Stress-induced curvature engineering in surface-micromachined devices, Proc. SPIE 3680, 984 (1999)CrossRefGoogle Scholar
  31. 13.31
    D.J. Young, B.E. Boser: A micromachined variable capacitor for monolithic low-noise VCOs. In: IEEE Solid-State Sens. Actuator Workshop (1996) pp. 86–89Google Scholar
  32. 13.32
    A. Dec, K. Suyama: Micromachined electro-mechanically tunable capacitors and their applications to RF IC’s, IEEE Trans. Microw. Theory Tech. 46, 2587–2596 (1998)CrossRefGoogle Scholar
  33. 13.33
    Z. Li, N.C. Tien: A high tuning-ratio silicon-micromachined variable capacitor with low driving voltage. In: IEEE Solid-State Sens. Actuator Microsyst. Workshop (2002) pp. 239–242Google Scholar
  34. 13.34
    Z. Xiao, W. Peng, R.F. Wolffenbuttel, K.R. Farmer: Micromachined variable capacitor with wide tuning range. In: IEEE Solid-State Sens. Actuator Workshop (2002) pp. 346–349Google Scholar
  35. 13.35
    J.J. Yao, S.T. Park, J. DeNatale: High tuning-ratio MEMS-based tunable capacitors for RF communications applications. In: IEEE Solid-State Sens. Actuator Workshop (1998) pp. 124–127Google Scholar
  36. 13.36
    J.B. Yoon, C.T.-C. Nguyen: A high-Q tunable micromechanical capacitor with movable dielectric for RF applications. In: IEEE Int. Electron Devices Meet (2000) pp. 489–492Google Scholar
  37. 13.37
    D.J. Young, V. Malba, J.J. Ou, A.F. Bernhardt, B.E. Boser: Monolithic high-performance three-dimensional coil inductors for wireless communication applications. In: IEEE Int. Electron Devices Meet (1997) pp. 67–70Google Scholar
  38. 13.38
    D.J. Young, B.E. Boser, V. Malba, A.F. Bernhardt: A micromachined RF low phase noise voltage-controlled oscillator for wireless communication, Int. J. RF Microw. Comput.-Aided Eng. 11(5), 285–300 (2001)CrossRefGoogle Scholar
  39. 13.39
    J.B. Yoon, C.H. Han, E. Yoon, K. Lee, C.K. Kim: Monolithic high-Q overhang inductors fabricated on silicon and glass substrates. In: IEEE Int. Electron Devices Meet (1999) pp. 753–756Google Scholar
  40. 13.40
    C.L. Chua, D.K. Fork, K.V. Schuylenbergh, J.P. Lu: Self-assembled out-of-plane high Q inductors. In: IEEE Solid-State Sens. Actuator Microsyst. Workshop (2002) pp. 372–373Google Scholar
  41. 13.41
    C.L. Goldsmith, Z. Yao, S. Eshelman, D. Denniston: Performance of low-loss RF MEMS capacitive switches, IEEE Microw. Guided Wave Lett. 8(8), 269–271 (1998)CrossRefGoogle Scholar
  42. 13.42
    J.J. Yao, M.F. Chang: A surface micromachined miniature switch for telecommunication applications with signal frequencies from DC up to 40 GHz. In: 8th Int. Conf. Solid-State Sens. Actuators (1995) pp. 384–387Google Scholar
  43. 13.43
    P.M. Zavracky, N.E. McGruer, R.H. Morriosn, D. Potter: Microswitches and microrelays with a view toward microwave applications, Int. J. RF Microw. Comput.-Aided Eng. 9(4), 338–347 (1999)CrossRefGoogle Scholar
  44. 13.44
    D. Hyman, J. Lam, B. Warneke, A. Schmitz, T.Y. Hsu, J. Brown, J. Schaffner, A. Walston, R.Y. Loo, M. Mehregany, J. Lee: Surface-micromachined RF MEMs switches on GaAs substrates, Int. J. RF Microw. Comput.-Aided Eng. 9(4), 348–361 (1999)CrossRefGoogle Scholar
  45. 13.45
    C.T.C. Nguyen, R.T. Howe: CMOS microelectromechanical resonator oscillator. In: IEEE Int. Electron Devices Meet (1993) pp. 199–202CrossRefGoogle Scholar
  46. 13.46
    L. Lin, R.T. Howe, A.P. Pisano: Microelectromechanical filters for signal processing, IEEE J. Microelectromech. Syst. 7(3), 286–294 (1998)CrossRefGoogle Scholar
  47. 13.47
    F.D. Bannon III, J.R. Clark, C.T.C. Nguyen: High frequency micromechanical filter, IEEE J. Solid-State Circuits 35(4), 512–526 (2000)CrossRefGoogle Scholar
  48. 13.48
    K. Wang, Y. Yu, A.C. Wong, C.T.C. Nguyen: VHF free-free beam high-Q micromechanical resonators. In: 12th IEEE Int. Conf. Micro Electro Mech. Syst. (1999) pp. 453–458Google Scholar
  49. 13.49
    J.R. Clark, W.T. Hsu, C.T.C. Nguyen: High-Q VHF micromechanical contour-mode disk resonators. In: IEEE Int. Electron Devices Meet (2000) pp. 493–496Google Scholar
  50. 13.50
    C.T.C. Nguyen, R.T. Howe: Quality factor control for micromechanical resonator. In: IEEE Int. Electron Devices Meet (1992) pp. 505–508Google Scholar
  51. 13.51
    M.L. Roukes: Nanoelectromechanical systems face the future, Phys. World 14, 25–31 (2001)CrossRefGoogle Scholar
  52. 13.52
    M.L. Roukes, A. Scherer, S.J. Allen Jr., H.G. Craighead, R.M. Ruthen, E.D. Beebe, J.P. Harbison: Quenching of the Hall effect in a onedimensional wire, Phys. Rev. Lett. (1987) doi: 10.1103/PhysRevLett.59.3011
  53. 13.53
    B.P. Van der Gaag, A. Scherer: Microfabrication below 10nm, Appl. Phys. Lett. (1990) doi: 10.1063/1.102772
  54. 13.54
    M.L. Roukes: Nanoelectromechanical systems. In: Tech. Dig. 2000 Solid-State Sens. Actuator Workshop (Transducers Research Foundation, Cleveland 2000) pp. 367–376Google Scholar
  55. 13.55
    M.L. Roukes: Plenty of room, indeed, Sci, Am, Vol. 285, 2001) pp. 48–57Google Scholar
  56. 13.56
    K.L. Ekinci, Y.T. Yang, M.L. Roukes: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems, J. of Appl. Phys. 95(5), 2682–2689 (2004)CrossRefGoogle Scholar
  57. 13.57
    K.L. Ekinci, M.L. Roukes: Nanoelectromechanical systems, Rev. of Sci. Instrum. (2005) doi: 10.1063/1.1927327
  58. 13.58
    H.G. Craighead: Nanoelectromechanical systems, Science 290, 1532–1535 (2000)CrossRefGoogle Scholar
  59. 13.59
    A.N. Cleland, M.L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69, 2653–2655 (1996)CrossRefGoogle Scholar
  60. 13.60
    D.W. Carr, H.G. Craighead: Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vac. Sci. Technol. B 15, 2760–2763 (1997)CrossRefGoogle Scholar
  61. 13.61
    T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70, 2687–2689 (1997)CrossRefGoogle Scholar
  62. 13.62
    S.C. Masmanidis, R.B. Karabalin, I.D. Vlaminck, G. Borghs, M.R. Freeman, M.L. Roukes: Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation, Science (2007) doi: 10.1126/science.1144793
  63. 13.63
    H.X. Tang, X.M.H. Huang, M.L. Roukes, M. Bichler, W. Wegsheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81, 3879–3881 (2002)CrossRefGoogle Scholar
  64. 13.64
    R. Ruby, P. Bradley, J.D. Larson, Y. Oshmyansky: PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs), Electron. Lett. (1999) doi: 10.1049/el:19990559
  65. 13.65
    G. Piazza, P.J. Stephanou, A.P. Pisano: Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators, J. of Microelectromechanical Syst. (2006) doi: 10.1109/JMEMS.2006.886012
  66. 13.66
    R.B. Karabalin, M.H. Matheny, X.L. Feng, E. Defaÿ, G. Le Rhun, C. Marcoux, S. Hentz, P. Andreucci, M.L. Roukes: Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films, Appl. Phys. Lett. (2009) doi: 10.1063/1.3216586
  67. 13.67
    N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, G. Piazza: Piezoelectric aluminum nitride nanoelectromechanical actuators, Appl. Phys. Lett. (2009) doi: 10.1063/1.3194148
  68. 13.68
    X.L. Feng, R.R. He, P.D. Yang, M.L. Roukes: Very high frequency silicon nanowire electromechanical resonators, Nano Lett. (2007) doi: 10.1021/nl0706695
  69. 13.69
    P.X.-L. Feng: Nanoscale electromechanical devices enabled by nanowire structures. In: Microelectronics to Nanoelectronics: Materials, Devices & Manufacturability, ed. by A.B. Kaul (CRC, Boca Raton 2012) pp. 109–128CrossRefGoogle Scholar
  70. 13.70
    D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, J.M. Parpia: Measurement of mechanical resonance and losses in nanometer scale silicon wires, Appl. Phys. Lett. 75, 920–922 (1999)CrossRefGoogle Scholar
  71. 13.71
    D.W. Carr, L. Sekaric, H.G. Craighead: Measurement of nanomechanical resonant structures in single-crystal silicon, J. Vac. Sci. Technol. B 16, 3821–3824 (1998)CrossRefGoogle Scholar
  72. 13.72
    S. Evoy, D.W. Carr, L. Sekaric, A. Olkhovets, J.M. Parpia, H.G. Craighead: Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators, J. Appl. Phys. 86, 6072–6077 (1999)CrossRefGoogle Scholar
  73. 13.73
    L. Sekaric, M. Zalalutdinov, S.W. Turner, A.T. Zehnder, J.M. Parpia, H.G. Craighead: Nanomechancial resonant structures as tunable passive modulators, Appl. Phys. Lett. 80, 3617–3619 (2002)CrossRefGoogle Scholar
  74. 13.74
    A.N. Cleland, M.L. Roukes: A nanometre-scale mechanical electrometer, Nature 392, 160–162 (1998)CrossRefGoogle Scholar
  75. 13.75
    K.C. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes: Measurement of the quantum of thermal conductance, Nature 404, 974–977 (2000)CrossRefGoogle Scholar
  76. 13.76
    S. Evoy, A. Olkhovets, L. Sekaric, J.M. Parpia, H.G. Craighead, D.W. Carr: Temperature-dependent internal friction in silicon nanoelectromechanical systems, Appl. Phys. Lett. 77, 2397–2399 (2000)CrossRefGoogle Scholar
  77. 13.77
    X.M.H. Huang, X.L. Feng, C.A. Zorman, M. Mehregany, M.L. Roukes: VHF, UHF and microwave frequency nanomechanical resonators, New J. of Phys. (2005) doi: 10.1088/1367-2630/7/1/247
  78. 13.78
    X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes: Nanoelectromechanical systems: Nanodevice motion at microwave frequencies, Nature 421, 496 (2003)CrossRefGoogle Scholar
  79. 13.79
    X.L. Feng, C.J. White, A. Hajimiri, M.L. Roukes: A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator, Nat. Nanotechnol. 3, 342–346 (2008)CrossRefGoogle Scholar
  80. 13.80
    R.G. Knobel, A.N. Cleland: Nanometre-scale displacement sensing using a single electron transistor, Nature 424, 291–293 (2003)CrossRefGoogle Scholar
  81. 13.81
    M.D. LaHaye: The Radio-Frequency Single-Electron Transistor Displacement Detector, Ph.D. Thesis (Department of Physics, University of Maryland, College Park 2005)Google Scholar
  82. 13.82
    M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab: Approaching the quantum limit of a nanomechanical resonator, Science 304, 74–77 (2004)CrossRefGoogle Scholar
  83. 13.83
    M.D. LaHaye, J. Suh, P.M. Echternach, K.C. Schwab, M.L. Roukes: Nanomechanical measurements of a superconducting qubit, Nature 459, 960–964 (2009)CrossRefGoogle Scholar
  84. 13.84
    A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland: Quantum ground state and single-phonon control of a mechanical resonator, Nature 464, 697–703 (2010)CrossRefGoogle Scholar
  85. 13.85
    A. Cho: Researchers race to put the quantum into mechanics, Science (2003) doi: 10.1126/science.299.5603.36
  86. 13.86
    K.C. Schwab, M.L. Roukes: Putting mechanics into quantum mechanics, Phys. Today 58, 36–42 (2005)CrossRefGoogle Scholar
  87. 13.87
    C.A. Regal, J.D. Teufel, K.W. Lehnert: Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys. 4, 555–560 (2008)CrossRefGoogle Scholar
  88. 13.88
    J.D. Teufel, T. Donner, D. Li, J.W. Harlow, M.S. Allman, K. Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, R.W. Simmonds: Sideband cooling of micromechanical motion to the quantum ground state, Nature 475, 359–363 (2011)CrossRefGoogle Scholar
  89. 13.89
    T.J. Kippenberg, K.J. Vahala: Cavity optomechanics, Opt. Express 15, 17172–17205 (2007)CrossRefGoogle Scholar
  90. 13.90
    T.J. Kippenberg, K.J. Vahala: Cavity optomechanics: Back-action at the mesoscale, Science 321, 1172–1176 (2008)CrossRefGoogle Scholar
  91. 13.91
    T.D. Stowe, K. Yasumura, T.W. Kenny, D. Botkin, K. Wago, D. Rugar: Attonewton force detection using ultrathin silicon cantilevers, Appl. Phys. Lett. 71, 288–290 (1997)CrossRefGoogle Scholar
  92. 13.92
    D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui: Single spin detection by magnetic resonance force microscopy, Nature 430, 329–332 (2004)CrossRefGoogle Scholar
  93. 13.93
    Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, M.L. Roukes: Zeptogram-scale nanomechanical mass sensing, Nano Lett. 6, 583–586 (2006)CrossRefGoogle Scholar
  94. 13.94
    A.K. Naik, M.S. Hanay, W.K. Hiebert, X.L. Feng, M.L. Roukes: Toward single-molecule nanomechanical mass spectrometry, Nat. Nanotechnol. 4, 445–450 (2009)CrossRefGoogle Scholar
  95. 13.95
    B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold: Ultrasensitive mass sensing with a nanotube electromechanical resonator, Nano Lett. 8, 3735–3738 (2008)CrossRefGoogle Scholar
  96. 13.96
    H.Y. Chiu, P. Hung, H.W. Ch Postma, M. Bockrath: Atomic-scale mass sensing using carbon nanotube resonators, Nano Lett. 8, 4342–4346 (2008)CrossRefGoogle Scholar
  97. 13.97
    K. Jensen, K. Kim, A. Zettl: An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol. 3, 533–537 (2008)CrossRefGoogle Scholar
  98. 13.98
    T.P. Burg, M. Godin, S.M. Knudsen, W.J. Shen, G. Carlson, J.S. Foster, K. Babcock, S.R. Manalis: Weighing of biomolecules, single cells and single nanoparticles in fluid, Nature 446, 1066–1069 (2007)CrossRefGoogle Scholar
  99. 13.99
    J.L. Arlett, E.B. Myers, M.L. Roukes: Comparative advantages of mechanical biosensors, Nat. Nanotechnol. 6, 203–215 (2011)CrossRefGoogle Scholar
  100. 13.100
    Y.T. Yang, C. Callegari, X.L. Feng, M.L. Roukes: Surface adsorbate fluctuations and noise in nanoelectromechanical systems, Nano Lett 11, 1753–1759 (2011)CrossRefGoogle Scholar
  101. 13.101
    R.R. He, X.L. Feng, M.L. Roukes, P.D. Yang: Self-transducing silicon nanowire electromechanical systems at room temperature, Nano Lett. 8, 1756–1761 (2008)CrossRefGoogle Scholar
  102. 13.102
    Z. Wang, J. Lee, P.X.-L. Feng: Spatial mapping of multimode Brownian motions in high frequency silicon carbide microdisk resonators, Nat. Commun. (2014) doi: 10.1038/ncomms6158
  103. 13.103
    T. He, R. Yang, S. Rajgopa, M. Tupta, S. Bhunia, M. Mehregany, P.X.-L. Feng: Robust silicon carbide (SiC) nanoelectromechanical switches with long cycles in ambient and high temperature conditions. In: Proc. 26th IEEE Int. Conf. Micro Electro Mech. Syst., Taipei (2013) pp. 516–519Google Scholar
  104. 13.104
    T. He, R. Yang, V. Ranganathan, S. Rajgopal, M.A. Tupta, S. Bhunia, M. Mehregany, P.X.-L. Feng: Silicon carbide (SiC) nanoelectromechanical switches and logic gates with long cycles and robust performance in ambient air and at high temperature, Electron Devices Meet. (2013) doi: 10.1109/IEDM.2013.6724562
  105. 13.105
    T. Lee, S. Bhunia, M. Mehregany: Electromechanical computing at 500C with SiC, Science 329, 1316–1318 (2010)CrossRefGoogle Scholar
  106. 13.106
    X.L. Feng, M.H. Matheny, C.A. Zorman, M. Mehregany, M.L. Roukes: Low voltage nanoelectromechanical switches based on silicon carbide nanowires, Nano Lett 10, 2891–2896 (2010)CrossRefGoogle Scholar
  107. 13.107
    T. He, R. Yang, S. Rajgopal, S. Bhunia, M. Mehregany, P.X.-L. Feng: Dual-gate silicon carbide (SiC) lateral nanoelectromechanical switches. In: Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference (IEEE, Suzhou 2013) doi: 10.1109/NEMS.2013.6559791 Google Scholar
  108. 13.108
    T. He, V. Ranganathan, R. Yang, S. Rajgopal, S. Bhunia, M. Mehregany, P.X.-L. Feng: Time-domain AC characterization of silicon carbide (SiC) nanoelectromechanical switches toward high-speed operations. In: Tech. Digest, 17th Int. Conf. on Solid-State Sensors, Actuators & Microsystems (Transducers 13) (IEEE, Barcelona 2013) doi: 10.1109/Transducers.2013.6626855 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Philip X.-L. Feng
    • 1
  • Darrin J. Young
    • 2
  • Christian A. Zorman
    • 3
  1. 1.Dept. of Electrical Engineering & Computer ScienceCase Western Reserve UniversityClevelandUSA
  2. 2.Dept. of Electrical & Computer EngineeringUniversity of UtahSalt Lake CityUSA
  3. 3.Dept. of Electrical Engineering & Computer ScienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations