Advertisement

Nicht-Kollaps-Interpretationen der Quantentheorie

  • Oliver Passon
Chapter

Zusammenfassung

In Abschn. 2.3.1 wurde das Messproblem in der Form eines Trilemmas formuliert. Demnach ist entweder (i) die Wellenfunktion keine vollständige Beschreibung, (ii) die Zeitentwicklung nicht durchgängig unitär oder führen (iii) Messungen nicht zu definiten Ergebnissen. Die in Abschn. 2.3.1 dargestellte GRW-Theorie wählt (ii) – ergänzt die Schrödinger-Gleichung also um einen nichtlinearen Term, der einen physikalischen Mechanismus für den „tatsächlichen“ Kollaps derWellenfunktion modelliert.

Literatur zu Kap. 5

  1. Albert, David und Barry Loewer (1988). Interpreting the many-worlds interpretation. Synthese 77, 195–213.Google Scholar
  2. Albert, David (2010). Probability in the Everett Picture. In: Saunders et al. (2010, 355–368).Google Scholar
  3. Allori, Valia, Sheldon Goldstein, Roderich Tumulka und Nino Zangh‘i (2011). Many worlds and Schrödinger’s first quantum theorie. British Journal for the Philosophy of Science 62, 1–27.Google Scholar
  4. Bacciagaluppi, Guido (2002). Remarks on space-time and locality in Everett’s interpretation. In: T. Placek und J. Butterfield (Hg.) Non-locality and Modality. (NATO Science Series), Dordrecht: Kluwer.Google Scholar
  5. Bacciagaluppi, Guido und Antony Valentini (2009). Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge: Cambridge University Press.Google Scholar
  6. Ballentine, Leslie (1971). Can the statistical postulate of quantum theory be derived – a critique of the many-universes interpretation. Foundations of Physics 3(2), 229.Google Scholar
  7. Barrett, Jeffrey A. (1999). The Quantum Mechanics of Minds and Worlds. Oxford: Oxford University Press.Google Scholar
  8. Barrett, Jeffrey A. (2011). Everett’s pure wave mechanics and the notion of worlds. European Journal for the Philosophy of Science 1, 277–302.Google Scholar
  9. Bartels, Andreas (2007). Wissenschaftlicher Realismus. In: A. Bartels und M. Stöckler (Hg.) Wissenschaftstheorie. Paderborn: mentis.Google Scholar
  10. Bell, John S. (1980). de Broglie-Bohm, delayed-choice, double-slit experiment, and density matrix. In: Bell et al. (2001, 94).Google Scholar
  11. Bell, Mary, Kurt Gottfried und Martinus Veltman (Hg.) (2001). John S. Bell on the foundation of Quantum Mechanics. Singapore: World Scientific.Google Scholar
  12. Bohm, David (1952). A suggested interpretation of the quantum theory in terms of ‚ hidden‘ variables. Physical Review 85, 166 (1. Teil) und 180 (2. Teil).Google Scholar
  13. Bohm, David (1953). Proof that probability density approaches \(\vert \psi\vert ^2\) in causal interpretation of the quantum theory. Physical Review 89, 458.Google Scholar
  14. Bohm, David und Basil J. Hiley (1993). The Undivided Universe. London: Routledge.Google Scholar
  15. Bohr, Niels (1935). Quantum mechanics and physical reality. Nature 136, 1025–1026.Google Scholar
  16. Bricmont, J. (2016) Making Sense of Quantum Mechanics. Heidelberg: Springer.Google Scholar
  17. de Broglie, Louis (1927) La structure atomique de la matière et du rayonnement et la méchanique ondulatoire. Journal de Physique VI 8, 25.Google Scholar
  18. Brown, Harvey und David Wallace (2005). Solving the measurement problem: De Broglie-Bohm loses out to Everett. Foundations of Physics 35, 517.Google Scholar
  19. Bub, Jeffrey (1997). Interpreting the Quantum World. Cambridge: Cambridge University Press.Google Scholar
  20. Cushing, James T. (1995). Quantum tunneling times: a crucial test for the causal program? Foundations of Physics 25, 296.Google Scholar
  21. Daumer, Martin, Detlef Dürr, Sheldon Goldstein und Nino Zangh‘i (1996). Naive realism about operators. Erkenntnis 45, 379–397.Google Scholar
  22. Deotto, Enrico und GianCarlo Ghirardi (1998). Bohmian mechanics revisited. Foundations of Physics 28, 1.Google Scholar
  23. DeWitt, Bryce S. und Neil Graham (Hg.) (1973). The Many-Worlds Interpretation of Quantum Mechanics. Princeton: Princeton University Press.Google Scholar
  24. Deutsch, David (1985). Quantum theory as a universal physical theory. International Journal of Theoretical Physics 24(1), 1–41.Google Scholar
  25. Deutsch, David (1996). Comment on Lockwood. British Journal for the Philosophy of Science 47(2), 222–228.Google Scholar
  26. Deutsch, David (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society of London A 455, 3129–3137.Google Scholar
  27. Dürr, Detlef, Sheldon Goldstein und Nino Zangh‘i (1992). Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics 67, 843 und quant-ph/0308039 (die Seitenangaben beziehen sich auf die arXiv Version).Google Scholar
  28. Dürr, Detlef, Sheldon Goldstein und Nino Zangh‘i (1996). Bohmian mechanics and the meaning of the wave function. In R. S. Cohen, M. Horne und J. Stachel (Hg.) (1996). Experimental Metaphysics – Quantum Mechanical Studies in Honor of Abner Shimony. Boston Studies in the Philosophy of Science, Dordrecht: Kluwer.Google Scholar
  29. Dürr, Detlef (2001). Bohmsche Mechanik als Grundlage der Quantenmechanik. Berlin: Springer.Google Scholar
  30. Dürr, Detlef und Dustin Lazarovici (2012). Quantenphysik ohne Quantenphilosophie. In: M. Esfeld (Hg.) Philosophie der Physik. Berlin: Suhrkamp.Google Scholar
  31. Dewdney, Chris und Basil J. Hiley (1982). A Quantum potential description of one-dimensional time-dependent scattering from square barriers and square wells. Foundations of Physics 12(1), 27–48.Google Scholar
  32. Elby, Andrew und Jeffrey Bub (1994). Triorthogonal uniqueness theorem and its relevance to the interpretation of quantum mechanics. Physical Review A 49(5), 4213.Google Scholar
  33. Everett III, Hugh (1957). „Relative state“ formulation of quantum mechanics. Review of Modern Physics 29(3), 454.Google Scholar
  34. Greaves, Hilary (2004). Understanding Deutsch’s probability in a deterministic multiverse. Studies in History and Philosophy of Modern Physics 35, 423.Google Scholar
  35. Greaves, Hilary (2007). Probability in the Everett interpretation. Philosophy Compass 2(1), 109–128.Google Scholar
  36. Greenberger, Daniel, Klaus Hentschel und Friedel Weinert (Hg.) (2009). Compendium of Quantum Physics. Dordrecht, Heidelberg, London, New York: Springer.Google Scholar
  37. Hacking, Ian (1983). Representing and Intervening. Cambridge: Cambridge University Press.Google Scholar
  38. Hartle, James (1968). Quantum mechanics of individual systems. American Journal of Physics 36, 704–712.Google Scholar
  39. Heisenberg, Werner (1959). Physik und Philosophie. Frankfurt/M.: Ullstein.Google Scholar
  40. Hemmo, Meir und Itamar Pitowsky (2007). Quantum probability and many worlds. Studies in History and Philosophy of Modern Physics 38, 333–350.Google Scholar
  41. Hiley, Basil J. (1999). Active information and teleportation. In: D. Greenberger et al. (Hg.) Epistemological and Experimental Perspectives on Quantum Physics. Dordrecht: Kluwer Academic Publishers.Google Scholar
  42. Holland, Peter R. (1993). The Quantum Theory of Motion. Cambridge: Cambridge University Press.Google Scholar
  43. Jammer, Max (1974). The philosophy of quantum mechanics. New York: Wiley.Google Scholar
  44. Landau, Lev D. und Jewgeni M. Lifschitz (2011). Lehrbuch der theoretischen Physik (Band 3) Quantenmechanik. Unveränderter Nachdruck der 9., Auflage 1986. Frankfurt/M.: Harri Deutsch.Google Scholar
  45. Lockwood, Michael (1996).’Many minds’ interpretations of quantum mechanics. British Journal for the Philosophy of Science 47, 159–188.Google Scholar
  46. Madelung, Erwin (1926). Eine anschauliche Deutung der Gleichung von Schrödinger. Naturwissenschaften 14(45), 1004.Google Scholar
  47. Maudlin, Tim (1995). Three measurement problems. Topoi 14(1), 7.Google Scholar
  48. Maudlin, Tim (2010). Can the World be Only Wavefunction? In: Saunders et al. (2010, 121–143).Google Scholar
  49. Mermin, David (1990). Simple Unified Form for the Major No-Hidden Variables Theorems. Physical Review Letters 65, 3373.Google Scholar
  50. Möllenstedt, Gottfried und Claus Jönsson (1959). Elektronen-Mehrfachinterferenzen an regelmäßig hergestellten Feinspalten. Zeitschrift für Physik 155, 472–474.Google Scholar
  51. Myrvold, Wayne C. (2003). On some early objections to Bohm’s theory. International Studies in the Philosophy of Science 17(1), 7–24.Google Scholar
  52. Pagonis, Constantine und Rob Clifton (1995). Unremarkable contextualism: dispositions in the Bohm theory. Foundations of Physics 25(2), 281.Google Scholar
  53. Passon, Oliver (2004). What you always wanted to know about Bohmian mechanics but were afraid to ask. Physics and Philosophy 3.Google Scholar
  54. Passon, Oliver (2010). Bohmsche Mechanik. 2. verbesserte Auflage, Frankfurt/M.: Harri Deutsch.Google Scholar
  55. Philippidis, Chris, Chris Dewdney und Basil J. Hiley (1979). Quantum interference and the quantum potential. Il Nuovo Cimento 52 B, 15.Google Scholar
  56. Saunders, Simon (1998). Quantum mechanics, and probability. Synthese 114, 373.Google Scholar
  57. Saunders, Simon, Jonathan Barrett, Adrian Kent und David Wallace (Hg.) (2010). Many Worlds? Everett, Quantum Theory, & Reality. Oxford: Oxford University Press.Google Scholar
  58. Schlosshauer, Maximilian (2005). Decoherence, the measurement problem, and interpretations of quantum mechanics. Review of Modern Physics 76, 1267–1305.Google Scholar
  59. Schrödinger, Erwin (1926). Quantisierung als Eigenwertproblem (Vierte Mitteilung). Annalen der Physik 81, 109–139.Google Scholar
  60. Tegmark, Max (1998). The Interpretation of quantum mechanics: many worlds or many words. Fortschritte der Physik 46, 855–862.Google Scholar
  61. Teufel, Stefan und Roderich Tumulka (2005). Simple proof for global existence of Bohmian trajectories. Communications in Mathematical Physics 258, 349–365.Google Scholar
  62. Tumulka, Roderich (2007). The ‘unromantic pictures’ of quantum theory. Journal of Physics A: Mathematical and Theoretical 40, 3245–3273.Google Scholar
  63. Vaidman, Lev (1998). On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory. International Studies in the Philosophy of Science 12, 245–261.Google Scholar
  64. Vaidman, Lev (2008). Many-worlds Interpretation of quantum mechanics. In: E. N. Zalta (Hg.) The Stanford Encyclopedia of Philosophy (Fall 2008 Edition).Google Scholar
  65. Valentini, Antony (1991). Signal-locality, uncertainty, and the subquantum H-theorem. Physics Letters A 156, No. 1-2, 5 (I) Physics Letters A 158, No. 1-2, 1 (II).Google Scholar
  66. Valentini, Antony (2004). Universal signature of non-quantum systems. Physics Letters A 332, 187–193.Google Scholar
  67. Valentini, Antony und Hans Westman (2005). Dynamical origin of quantum probabilities. Proceedings of the Royal Society of London A 461, 253–272.Google Scholar
  68. Wallace, David (2003). Everettian rationality: defending Deutsch’s approach to probability in the Everett interpretation. Studies in the History and Philosophy of Modern Physics 34, 415–438.Google Scholar
  69. Wallace, David (2005). Language use in a branching universe. Online verfügbar unter: http://philsci-archive.pitt.edu/2554/
  70. Wallace, David (2010). The Everett interpretation. In Batterman (Hg.) The Oxford Handbook of Philosophy of Physics (in Vorbereitung, zitiert nach der preprint Version in http://philsci-archive.pitt.edu).
  71. Zeh, Hans Dieter (1970). On the interpretation of measurement in quantum theory. Foundations of Physics 1, 69—76.Google Scholar
  72. Zurek, Wojciech H. (1981). Pointer basis of quantum apparatus: into what mixture does the wave packet collapse. Physical Review D 24, 1516–1525.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Fakultät für Mathematik und NaturwissenschaftenBergische Universität WuppertalWuppertalDeutschland

Personalised recommendations