Advertisement

MRT einschließlich Intervention

  • Pascal Baltzer
  • Thomas Helbich
  • Markus Müller-Schimpfle
  • Rüdiger Schulz-Wendtland

Zusammenfassung

Die MRT der Mamma ist das sensitivste Verfahren zur Detektion von Brustkrebs. Ihre hohe Sensitivität wird über die Visualisierung der Perfusion des untersuchten Gewebes erreicht. Neuere Studien attestieren der MRT der Mamma durchweg eine hohe, konventionellen Verfahren gleichwertige Spezifität. Voraussetzung für gute Ergebnisse in der MRT der Mamma sind einwandfreie Indikationsstellung, technische Durchführung und Erfahrung des Untersuchers.

Literatur

  1. American College of Radiology (2016) ACR BI-RADS®-Atlas der Mammadiagnostik. Übersetzung der 5. englischen Ausgabe. Springer, Berlin HeidelbergGoogle Scholar
  2. AWMF (2012) Interdisziplinäre S3-Leitlinie für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms [Internet]. Available from: www.awmf.org
  3. Baltzer A, Dietzel M, Kaiser CG, Baltzer PA (2016) Combined reading of Contrast Enhanced and Diffusion Weighted Magnetic Resonance Imaging by using a simple sum score. Eur Radiol 26(3):884–891Google Scholar
  4. Baltzer PA, Dietzel M, Vag T, Burmeister H, Gajda M, Camara O et al (2011) Clinical MR mammography: impact of hormonal status on background enhancement and diagnostic accuracy. Rofo 183(5):441–447Google Scholar
  5. Baltzer PA, Benndorf M, Dietzel M, Gajda M, Camara O, Kaiser WA (2010) Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur Radiol 20(5):1101–1110Google Scholar
  6. Baltzer PA, Benndorf M, Dietzel M, Gajda M, Runnebaum IB, Kaiser WA (2010) False-positive findings at contrast-enhanced breast MRI: a BI-RADS descriptor study. AJR Am J Roentgenol 194(6):1658–1663Google Scholar
  7. Baltzer PA, Dietzel M, Burmeister HP, Zoubi R, Gajda M, Camara O et al (2011) Application of MR mammography beyond local staging: is there a potential to accurately assess axillary lymph nodes? evaluation of an extended protocol in an initial prospective study. AJR Am J Roentgenol 196(5):W641–647Google Scholar
  8. Baltzer PA, Dietzel M, Kaiser WA (2013) A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography. Eur Radiol 23(8):2051–2060Google Scholar
  9. Baltzer PA, Dietzel M, Kaiser WA (2011) Nonmass lesions in magnetic resonance imaging of the breast: additional T2-weighted images improve diagnostic accuracy. J Comput Assist Tomogr 35(3):361–366Google Scholar
  10. Baltzer PA, Dietzel M (2013) Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T--systematic review and meta-analysis. Radiology 267(3):735–746Google Scholar
  11. Baltzer PA, Gussew A, Dietzel M, Rzanny R, Gajda M, Camara O et al (2012) Effect of contrast agent on the results of in vivo 1H MRS of breast tumors - is it clinically significant? NMR Biomed 25(1):67–74Google Scholar
  12. Baltzer PA, Kaiser WA, Dietzel M (2015) Lesion type and reader experience affect the diagnostic accuracy of breast MRI: A multiple reader ROC study. Eur J Radiol 84(1):86–91Google Scholar
  13. Baum F, Fischer U, Vosshenrich R, Grabbe E (2002) Classification of hypervascularized lesions in CE MR imaging of the breast. Eur Radiol 12(5):1087–1092Google Scholar
  14. Begley JK, Redpath TW, Bolan PJ, Gilbert FJ (2012) In vivo proton magnetic resonance spectroscopy of breast cancer: a review of the literature. Breast Cancer Res 14(2):207Google Scholar
  15. Bennani-Baiti B, Baltzer PA (2016) MR imaging for diagnosis of malignancy in mammographic microcalcifications: a systematic review and meta-analysis. Radiology 2016 Oct 27:161106, [Epub ahead of print]Google Scholar
  16. Bennani-Baiti B, Bennani-Baiti N, Baltzer PA (2016a) Diagnostic performance of breast magnetic resonance imaging in non-calcified equivocal breast findings: results from a systematic review and meta-analysis«, PLoS ONE 11(8)e0160346Google Scholar
  17. Bennani-Baiti B, Dietzel M, Baltzer PA (2016b) MRI background parenchymal enhancement is not associated with breast cancer. PLoS ONE 11(7):e0158573Google Scholar
  18. Benndorf M, Baltzer PAT, Vag T, Gajda M, Runnebaum IB, Kaiser WA (2010) Breast MRI as an adjunct to mammography: Does it really suffer from low specificity? A retrospective analysis stratified by mammographic BI-RADS classes. Acta Radiol 51(7):715–721Google Scholar
  19. Bickel H, Pinker-Domenig K, Bogner W, Spick C, Bagó-Horváth Z, Weber M et al (2015) Quantitative apparent diffusion coefficient as a noninvasive imaging biomarker for the differentiation of invasive breast cancer and ductal carcinoma in situ. Invest Radiol 50(2):95–100Google Scholar
  20. Bogner W, Pinker-Domenig K, Bickel H, Chmelik M, Weber M, Helbich TH et al (2012) Readout-segmented echo-planar imaging improves the diagnostic performance of diffusion-weighted MR breast examinations at 3.0 T. Radiology 263(1):64–76Google Scholar
  21. Breast Imaging Working Group of the German Radiological Society (2014) Updated Recommendations for MRI of the Breast. Rofo 186(5):482–483Google Scholar
  22. Clauser P, Pinker K, Helbich TH, Kapetas P, Bernathova M, Baltzer P (2014) a.T. Fat saturation in dynamic breast MRI at 3 Tesla: is the Dixon technique superior to spectral fat saturation? A visual grading characteristics study. Eur Radiol 24(9):2213–2219Google Scholar
  23. Crystal P, Sadaf A, Bukhanov K, McCready D, O’Malley F, Helbich TH (2011) High-risk lesions diagnosed at MRI-guided vacuum-assisted breast biopsy: can underestimation be predicted? Eur Radiol 21(3):582–589Google Scholar
  24. DeMartini WB, Liu F, Peacock S, Eby PR, Gutierrez RL, Lehman CD (2012) Background parenchymal enhancement on breast MRI: impact on diagnostic performance. AJR Am J Roentgenol 198(4):W373–3780Google Scholar
  25. Dietzel M, Baltzer PAT, Vag T, Gröschel T, Gajda M, Camara O et al (2010) Application of breast MRI for prediction of lymph node metastases - systematic approach using 17 individual descriptors and a dedicated decision tree. Acta Radiol 51(8):885–894Google Scholar
  26. Dietzel M, Zoubi R, Burmeister HP, Runnebaum IB, Kaiser WA, Baltzer PAT (2012) Combined staging at one stop using MR mammography: evaluation of an extended protocol to screen for distant metastasis in primary breast cancer - initial results and diagnostic accuracy in a prospective study. Rofo 184(7):618–623Google Scholar
  27. Dorrius MD, Dijkstra H, Oudkerk M, Sijens PE (2014) Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis. Eur Radiol 24(11):2835–2847Google Scholar
  28. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA et al (2013) ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of Radiology, Reston, VAGoogle Scholar
  29. Fischer U, Schwethelm L, Baum F, Luftner-Nagel S, Teubner J (2009) Aufwand, Zuverlässigkeit und histologische Ergebnisse der MR-gesteuerten Vakuumbiopsie suspekter Mammabefunde – retrospektive Auswertung von 389 Interventionen. Rofo 181(8):774–781Google Scholar
  30. Floery D, Helbich TH (2006) MRI-Guided percutaneous biopsy of breast lesions: materials, techniques, success rates, and management in patients with suspected radiologic-pathologic mismatch. Magn Reson Imaging Clin N Am 14(3):411–425, viiiGoogle Scholar
  31. Gruber S, Debski B-K, Pinker K, Chmelik M, Grabner G, Helbich T et al (2011) Three-dimensional proton MR spectroscopic imaging at 3 T for the differentiation of benign and malignant breast lesions. Radiology 261(3):752–761Google Scholar
  32. Gruber S, Pinker K, Zaric O, Minarikova L, Chmelik M, Baltzer P et al (2014) Dynamic contrast-enhanced magnetic resonance imaging of breast tumors at 3 and 7 T: a comparison. Invest Radiol 49(5):354–362Google Scholar
  33. Gutierrez RL, DeMartini WB, Eby PR, Kurland BF, Peacock S, Lehman CD (2009) BI-RADS lesion characteristics predict likelihood of malignancy in breast MRI for masses but not for nonmasslike enhancement. AJR Am J Roentgenol 193(4):994–1000Google Scholar
  34. Herrmann K-H, Baltzer PA, Dietzel M, Krumbein I, Geppert C, Kaiser WA et al (2011) Resolving arterial phase and temporal enhancement characteristics in DCE MRM at high spatial resolution with TWIST acquisition. J Magn Reson Imaging 34(4):973–982Google Scholar
  35. Heywang-Köbrunner SH, Heinig A, Schaumlöffel U, Viehweg P, Buchmann J, Lampe D et al (1999) MR-guided percutaneous excisional and incisional biopsy of breast lesions. Eur Radiol 9(8):1656–1665Google Scholar
  36. Houssami N, Ciatto S, Macaskill P, Lord SJ, Warren RM, Dixon JM et al (2008) Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging: systematic review and meta-analysis in detection of multifocal and multicentric cancer. J Clin Oncol 26(19):3248–3258Google Scholar
  37. Kaiser WA (2008) Signs in MR-Mammography. Springer Berlin Heidelberg [cited 2015 Mar 17] Available from: http://www.springer.com/us/book/9783540732921
  38. King V, Brooks JD, Bernstein JL, Reiner AS, Pike MC, Morris EA (2011) Background parenchymal enhancement at breast MR imaging and breast cancer risk. Radiology 260(1):50–60Google Scholar
  39. King V, Kaplan J, Pike MC, Liberman L, David Dershaw D, Lee CH et al (2012) Impact of tamoxifen on amount of fibroglandular tissue, background parenchymal enhancement, and cysts on breast magnetic resonance imaging. Breast J 18(6):527–534Google Scholar
  40. Kuhl C (2007) The current status of breast MR imaging. Part I Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244(2):356–378Google Scholar
  41. Kuhl CK, Bieling HB, Gieseke J, Kreft BP, Sommer T, Lutterbey G et al (1997) Healthy premenopausal breast parenchyma in dynamic contrast-enhanced MR imaging of the breast: normal contrast medium enhancement and cyclical-phase dependency. Radiology 203(1):137–144Google Scholar
  42. Kul S, Cansu A, Alhan E, Dinc H, Gunes G, Reis A (2011) Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors. AJR Am J Roentgenol 196(1):210–217Google Scholar
  43. Lindenblatt N, El-Rabadi K, Helbich TH, Czembirek H, Deutinger M, Benditte-Klepetko H (2014) Correlation between MRI results and intraoperative findings in patients with silicone breast implants. Int J Womens Health6:703–709Google Scholar
  44. Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18(7):1307–1318Google Scholar
  45. Marino MA et al (2016) A simple scoring system for breast MRI interpretation: does it compensate for reader experience? Eur Radiol 26(8):2529–2537Google Scholar
  46. Marinovich ML, Houssami N, Macaskill P, Sardanelli F, Irwig L, Mamounas EP et al (2013) Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after neoadjuvant therapy. J Natl Cancer Inst 105(5):321–333Google Scholar
  47. Marinovich ML, Sardanelli F, Ciatto S, Mamounas E, Brennan M, Macaskill P et al (2012) Early prediction of pathologic response to neoadjuvant therapy in breast cancer: systematic review of the accuracy of MRI. Breast 21(5):669–677Google Scholar
  48. Müller-Schimpfle M, Heindel W, Kettritz U, Schulz-Wendtland R, Bick U (2014) Consensus meeting of course directors in breast imaging, AG Mamma –the teacher in breast diagnostics on 04.05.2013 in Frankfurt am Main -- standards in technology and reporting. Rofo 186(4):410–416Google Scholar
  49. Müller-Schimpfle M, Graf O, Madjar H, Fuchsjäger M, Golatta M, Hahn M, Mundinger A, Schreer I, Weismann C, Schultz-Wendtlandt R, Helbich T (2016) BI-RADS die 5. – Eine Kurzmitteilung aus deutsch-/österreichischer Sicht. Rofo 188(4):346–352, DOI:  10.1055/s-0042-101847
  50. Müller-Schimpfle M, Ohmenhaüser K, Stoll P, Dietz K, Claussen CD (1997) Menstrual cycle and age: influence on parenchymal contrast medium enhancement in MR imaging of the breast. Radiology 203(1):145–149Google Scholar
  51. Müller-Schimpfle MP, Heindel W, Kettritz U, Schulz-Wendtland R, Bick U (2012) Consensus meeting of course directors in breast imaging, 7. Mai 2011, in Frankfurt am Main – topic: MRI of the breast. Rofo 184(10):919–924Google Scholar
  52. Partridge SC, DeMartini WB, Kurland BF, Eby PR, White SW, Lehman CD (2009) Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR Am J Roentgenol 193(6):1716–1722Google Scholar
  53. Perlet C, Heywang-Kobrunner SH, Heinig A, Sittek H, Casselman J, Anderson I et al (2006) Magnetic resonance-guided, vacuum-assisted breast biopsy: results from a European multicenter study of 538 lesions. Cancer 106(5):982–990Google Scholar
  54. Phi X-A, Houssami N, Obdeijn I-M, Warner E, Sardanelli F, Leach MO et al (2015) Magnetic resonance imaging improves breast screening sensitivity in BRCA mutation carriers age ≥50 years: Evidence from an individual patient data meta-analysis. J Clin Oncol 33(4):349–356Google Scholar
  55. Pinker K, Baltzer P, Bogner W, Leithner D, Trattnig S, Zaric O et al (2015) Multiparametric MR Imaging with High-Resolution Dynamic Contrast-enhanced and Diffusion-weighted Imaging at 7 T Improves the Assessment of Breast Tumors: A Feasibility Study. Radiology 14276(2):360–370Google Scholar
  56. Pinker K, Bickel H, Helbich TH, Gruber S, Dubsky P, Pluschnig U et al (2013) Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the »Breast Imaging Reporting and Data System« for multiparametric 3-T imaging of breast lesions. Eur Radiol 23(7):1791–1802Google Scholar
  57. Pinker K, Bogner W, Baltzer P, Gruber S, Bickel H, Brueck B et al (2014a) Improved Diagnostic Accuracy With Multiparametric Magnetic Resonance Imaging of the Breast Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Diffusion-Weighted Imaging, and 3-dimensional Proton Magnetic Resonance Spectroscopic Imaging. Invest Radiol 49(6):421–430Google Scholar
  58. Pinker K, Bogner W, Baltzer P, Trattnig S, Gruber S, Abeyakoon O et al (2014b) Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T. Eur Radiol24(4):913–920Google Scholar
  59. Riedl CC, Luft N, Bernhart C, Weber M, Bernathova M, Tea M-KM et al (2015) Triple-Modality Screening Trial for Familial Breast Cancer Underlines the Importance of Magnetic Resonance Imaging and Questions the Role of Mammography and Ultrasound Regardless of Patient Mutation Status, Age, and Breast Density. J Clin Oncol 33(10):1128–1135Google Scholar
  60. Sardanelli F, Boetes C, Borisch B, Decker T, Federico M, Gilbert FJ et al (2010) Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer 46(8):1296–1316Google Scholar
  61. Siegmann-Luz KC, Bahrs SD, Preibsch H, Hattermann V, Claussen CD (2014) Management of breast lesions detectable only on MRI. Rofo 186(1):30–36Google Scholar
  62. Spick C, Baltzer PA (2014) Diagnostic Utility of Second-Look US for Breast Lesions Identified at MR Imaging: Systematic Review and Meta-Analysis. Radiology 273(2):401–409Google Scholar
  63. Spick C, Szolar DHM, Baltzer PA, Tillich M, Reittner P, Preidler KW et al (2014) Rate of Malignancy in MRI-Detected Probably Benign (BI-RADS 3) Lesions. AJR Am J Roentgenol 202(3):684–689Google Scholar
  64. Spick C, Schernthaner M, Pinker K, Kapetas P, Bernathova M, Polanec SH, Bickel H, Wengert GJ, Rudas M, Helbich TH, Baltzer PA (2016) MR-guided vacuum-assisted breast biopsy of MRI-only lesions: a single center experience. Eur Radiol Eur Radiol 26(11):3908–3916, Epub 2016 MarGoogle Scholar
  65. Turnbull L, Brown S, Harvey I, Olivier C, Drew P, Napp V et al (2010) Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomised controlled trial. Lancet 375(9714):563–571Google Scholar
  66. Warner E, Messersmith H, Causer P, Eisen A, Shumak R, Plewes D (2008) Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med 148(9):671–679Google Scholar
  67. Woodhams R, Matsunaga K, Iwabuchi K, Kan S, Hata H, Kuranami M et al (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29(5):644–649Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Pascal Baltzer
    • 1
  • Thomas Helbich
    • 1
  • Markus Müller-Schimpfle
    • 2
  • Rüdiger Schulz-Wendtland
    • 3
  1. 1.Klinische Abteilung für Allgemeine Radiologie und KinderradiologieUniversitätsklinik für Radiologie und Nuklearmedizin Allgemeines KrankenhausWienÖsterreich
  2. 2.Klinik für RadiologieNeuroradiologie und Nuklearmedizin Klinikum Frankfurt Höchst GmbHFrankfurt a.M.
  3. 3.Radiologisches Institut/Gynäkologische RadiologieUniversitätsklinikum ErlangenErlangen

Personalised recommendations