Advertisement

Sonographie

  • Karin Bock
  • Volker F Duda
  • Thomas Fischer
  • Astrid Storch
  • Anke Thomas
  • Christian Weismann

Zusammenfassung

Der Ultraschall ist in der Mammadiagnostik die vielfältigste Technik. Aufbauend auf den konventionellen B-Bildern ist die Sonographie mittlerweile durch den Gebrauch höherer Frequenzen längst über die Differenzierung zwischen zystisch und solide hinausgewachsen. Durch den Einsatz der farbkodierten Dopplersonographie, der 3-D-Darstellung und der Elastographie lassen sich zudem eine ganze Reihe von weiteren Informationen über pathologische Veränderungen der Brust herausarbeiten. Dies hat den Ultraschall auch in der Brustkrebsfrüherkennung bzw. im Mammographie-Screening-Assessment zu einer unverzichtbaren Methode gemacht.

Literatur

Literatur zu Kap. 6.1

  1. Gebel MJ (2000) Neue Modifikationen und Verfahren der Sonographie und ihre praktische Bedeutung. Internist 41: 5–11Google Scholar
  2. Hahn M, Roessner L, Krainick-Strobel U, Gruber IV, Krämer B, Gall C, Siegmann KC, Wallwiener D, Kagan KO (2012) Dignitätskriterien der Mammasonografie unter Anwendung des Real-Time Compound Image in Kombination mit dem XRES Adaptiv Image Processing. Ultraschall in Med; 33: 270–274Google Scholar
  3. Kossoff G (1972) Improved techniques in ultrasonic sectional echography. Ultrasonics 10: 221–227Google Scholar
  4. Krämer S, Schulz-Wendtland R, Aichinger U, Bautz W, Lang N (1999) Panorama-Sonographie (Siescape 3D) der Brust – Planung der brusterhaltenden Therapie beim Mammakarzinom. Ultraschall in Med 20: 104Google Scholar
  5. Wild JJ, Reid JM (1952) Further pilot echographic studies on the histological structure of tumors of the human breast. Am J Pathology 28: 839–861Google Scholar

Literatur zu Kap. 6.2

  1. EFSUMB (Hrsg.) (2011) European Committee for Medical Ultrasound Safety (ECMUS) Clinical Safety Statement for Diagnostic UltrasoundGoogle Scholar

Literatur zu Kap. 6.3

  1. American College of Radiology (2011) Practice Guideline for the Performance of a Breast Ultrasound Examination. http://www.acr.org
  2. American College of Radiology (2016) ACR BI-RADS®-Atlas der Mammadiagnostik. Übersetzung der 5. englischen Ausgabe. Springer, Berlin HeidelbergGoogle Scholar

Literatur zu Kap. 6.4

  1. Baker JA, Kornguth PJ, Scott Soo M, Walsh R, Mengoni P (1999) Sonography of solid breast lesions: Observer variability of lesion description and assessment. AJR 172: 1621–1625Google Scholar
  2. Stavros AT, Thickman D, Rapp CL et al (1995) Solid breast nodules: use of sonography to distinguish between benign and malignant nodules. Radiology 196: 123–134Google Scholar
  3. Zonderland HM, Hermans J, Coerkamp EG (2000) Ultrasound variables and their prognostic value in a population of 1103 patients with 272 breast cancers. Eur Radiol 10: 1562–1568Google Scholar

Literatur zu Kap. 6.5

  1. Athanasiou A, Tardivon A, Tanter M et al (2010) Breast lesions: Quantitative elastography with Supersonic shear imaging-preliminary results. Radiology; 256: 297–303Google Scholar
  2. Berg WA, Cosgrove DO, Doré CJ et al (2012) Shear-wave elastography improves the specificity of breast US: The BE1 multinational study of 939 masses. Radiology; 262: 435–449Google Scholar
  3. Chang RF, Huang SF, Moon WK et al (2007) Network analysis of vascular features at three-dimensional power Doppler US for benign or malignant classification. Radiology; 243: 56–62Google Scholar
  4. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA et al (2013) ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of Radiology, Reston, VAGoogle Scholar
  5. Rotten D, Levaillant JM, Zerat L (1999) Analysis of normal breast tissue and of solid breast masses using three-dimensional ultrasound mammography. Ultrasound Obstet Gynecol; 14: 114–124Google Scholar
  6. Weismann CF, Datz L (2007) Diagnostic algorithm: how to make use of 2D, 3D and 4D ultrasound technologies in breast imaging. EJR; 64:250–257Google Scholar
  7. Weismann C, Hergan K (2007) Aktueller Stand der 3D/4D Sonographie der Mamma. Ultraschall in Med; 28:273–282Google Scholar

Literatur zu Kap. 6.6

  1. Aigner F, Pallwein L, Junker D et al (2010) Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol 184: 913–917Google Scholar
  2. American College of Radiology (Hrsg)( 2003) Breast Imaging and Reporting Data Systems (BI-RADS®). Breast Imaging Atlas. Reston, VA: American College of RadiologyGoogle Scholar
  3. Beier S (2011) Standardisierte Dehnungsfeldanalyse am Brustphantom und Einführung des Gewebedopplerverfahrens zur Differenzierung mammasonographischer Herdbefunde [Internet]. Verfügbar unter: http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000020335
  4. Bercoff J, Chaffai S, Tanter M et al (2003) In vivo breast tumor detection using transient elastography. Ultrasound Med Biol 10: 1387–1396Google Scholar
  5. Berg WA, Cosgrove DO, Doré CJ et al (2012) Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 262: 435–449Google Scholar
  6. Catheline S, Wu F, Fink M ( 1999) A solution to diffraction biases in sonoelasticity: the acoustic impulse technique. J Acoust Soc Am 105: 2941–2950Google Scholar
  7. Céspedes I, Ophir J, Ponnekanti H et al (1993) Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason Imaging 15: 73–88Google Scholar
  8. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA et al (2013) ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of Radiology, Reston, VAGoogle Scholar
  9. Evans A, Whelehan P, Thomson K et al () Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Br J Cancer 2012; 107: 224–229Google Scholar
  10. Fischer T, Peisker U, Fiedor S et al (2012) Significant differentiation of focal breast lesions: raw data-based calculation of strain ratio. Ultraschall Med 33: 372–379Google Scholar
  11. Fischer T, Sack I, Thomas A (2013) Characterization of focal breast lesions by means of elastography. Fortschr Röntgenstr 185(9): 816–823Google Scholar
  12. Frey H (2003) Realtime-Elastographie. Ein neues sonographisches Verfahren für die Darstellung der Gewebeelastizität. Radiologe 10: 850Google Scholar
  13. Friedrich-Rust M, Nierhoff J, Lupsor M et al (2012) Performance of acoustic radiation force impulse imaging for the staging of liver fibrosis: a pooled meta-analysis. J of Viral Hepatitis 19: e212–219Google Scholar
  14. Friedrich-Rust M, Ong M-F, Martens S et al (2008) Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 134: 960–974Google Scholar
  15. Friedrich-Rust M, Schwarz A, Ong M et al (2009) Real-time tissue elastography versus FibroScan for noninvasive assessment of liver fibrosis in chronic liver disease. Ultraschall Med 30: 478–484Google Scholar
  16. Garra BS, Cespedes EI, Ophir J et al (1997) Elastography of breast lesions: initial clinical results. Radiology 202: 79–86Google Scholar
  17. Hiltawsky KM, Krüger M, Starke C et al (2001) Freehand ultrasound elastography of breast lesions: clinical results. Ultrasound Med Biol 27: 1461–1469Google Scholar
  18. Hong Y, Liu X, Li Z et al (2009) Real-time ultrasound elastography in the differential diagnosis in benign and malignant thyroid nodules. J Ultrasound Med 28: 861–867Google Scholar
  19. Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239: 341–350Google Scholar
  20. Kanamoto M, Shimada M, Ikegami T et al (2009) Real time elastography for non invasive diagnosis in liver fibrosis. J Hepatobiliary Pancreat Surg 16: 463–467Google Scholar
  21. Klintworth N, Mantsopoulos K, Zenk J et al (2012) Sonoelastography of parotis gland tumours: initial experience and identification of characteristics patterns. Eur Radiol 22: 947–956Google Scholar
  22. Kolb TM, Lichy J, Newhouse JH (2002) Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology 225: 165–175Google Scholar
  23. Konofagou E, Ophir J (1998) A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson`s ratios in tissues. Ultrasound Med Biol 24: 1183–1199Google Scholar
  24. Krouskop TA, Wheeler TM, Kallel F et al (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20: 260–274Google Scholar
  25. Lee JH, Kim SH, Kang BJ et al (2011) Role and clinical usefulness of elastography in small breast masses. Acad Radiol 18: 74–80Google Scholar
  26. Lorenzen J, Sinkus R, Adam G (2003) Elastographie: Quantitative Bildgebung der elastischen Gewebeeigenschaften. Fortschr Röntgenstr 175: 623–630Google Scholar
  27. Moon WK, Chang RF, Chen CJ et al (2005) Solid breast masses: classification with computer-aided analysis of continuous US images obtained with probe compression. Radiology 236: 458–464Google Scholar
  28. Muthupillai R, Lomas DJ, Rossman P et al (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269: 1854–1857Google Scholar
  29. Ophir J, Céspedes I, Ponneanti H et al (1991) Elastography: a quantitative method for imaging the elasticity of biological tissue. Ultrason Imaging 13: 111–114Google Scholar
  30. Parker KJ, Lerner RM (1999) Sonoelasticity of organs: shear waves ring a bell. J Acoust Soc Am 105: 2941–2950Google Scholar
  31. Quinn EM, Coveney AP, Redmond HP (2012). Use of magnetic resonance imaging in detection of breast cancer recurrence: a systematic review. Ann Surg Oncol 19: 3035–3041Google Scholar
  32. Rubaltelli L, Corradin S, Dorigo A et al (2009) Differential diagnosis of benign and malignant thyroid nodules at elastosonography. Ultraschall Med 30: 175–179Google Scholar
  33. Sadigh G, Carlos RC, Neal CH et al (2012b) Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat 134: 923–931Google Scholar
  34. Sadigh G, Carlos RC, Neal CH et al (2012a) Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat 133: 23–35Google Scholar
  35. Sandrin L, Tanter M, Catheline S et al (2002) Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 49: 426–435Google Scholar
  36. Schaefer FK, Heer I, Schaefer PJ et al (2011) Breast ultrasound elastography--results of 193 breast lesions in a prospective study with histopathologic correlation. Eur J Radiol 77: 450–456Google Scholar
  37. Schmachtenberg C, Engelken F, Fischer T et al (2012) Intraoperative Specimen Radiography in Patients with Nonpalpable Malignant Breast Lesions. Fortschr Röntgenstr 184: 635–642Google Scholar
  38. Stock KF, Klein BS, Vo Cong MT et al (2010) ARFI-based tissue elasticity quantification in comparison to histology for the diagnosis of renal transplant fibrosis. Clin Hemorheol Microcirc 46: 139–148Google Scholar
  39. Tan SM, Teh HS, Mancer JF et al (2008) Improving B mode ultrasound evaluation of breast lesions with real-time ultrasound elastography – A clinical approach. Breast 17: 252–257Google Scholar
  40. Thomas A, Degenhardt F, Farrokh A et al (2010) Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol 17: 558–563Google Scholar
  41. Thomas A, Fischer T, Ohlinger R et al (2006a) Real-time elastography-an advanced method of ultrasound: First results in 108 patients with breast lesions. Ultrasound Obstet Gynecol 28: 335–340Google Scholar
  42. Thomas A, Kümmel S, Fritzsche F et al (2006b) Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions? Acad Radiol 13: 1496–1504Google Scholar
  43. Thomas A, Kümmel S, Gemeinhardt O et al (2007a) Real-time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Acad Radiol 14: 193–200Google Scholar
  44. Thomas A, Warm M, Diekmann F et al (2007b) Tissue doppler and strain imaging for evaluating tissue elasticity of breast lesions. Acad Radiol 14: 522–529Google Scholar
  45. Waldmann A, Adrich S, Eisemann N et al (2012) Struktur- und Prozessqualität in der qualitätsgesicherten Mammadiagnostik in Schleswig-Holstein. Fortschr Röntgenstr 184: 113–121Google Scholar
  46. Wojcinski S, Farrokh A, Weber S et al (2010) Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall Med 31: 484–491Google Scholar
  47. Zhi H, Ou B, Luo B et al (2007) Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med 26: 807–815Google Scholar
  48. Zhi H, Xiao XY, Yang HY et al (2010) Ultrasonic elastography in breast cancer diagnosis: stain ratio vs. 5-point scale. Acad Radiol 17: 1227–1233Google Scholar

Literatur zu Kap. 6.7

  1. Albert US, Planungskommission und Arbeitsgruppen der Konzertierten Aktion Brustkrebs-Früherkennung in Deutschland (2008) Stufe-3-Leitlinie Brustkrebs-Früherkennung in Deutschland, 1. Aktualisierung 2008. München: Zuckschwerdt VerlagGoogle Scholar
  2. AWMF (Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften) und ÄZQ (Ärztliche Zentralstelle Qualitätssicherung) (2001) Das Leitlinien-Manual. ZaeFQ 95: Suppl. IGoogle Scholar
  3. Buchberger W, Niehoff A, Obrist P, DeKoekkoek-Doll P, Dunser M (2000) Clinically and mammographically occult breast lesions: detection and classification with high-resolution sonography. Semin Ultrasound CT MR 21: 325–336Google Scholar
  4. Cilotti A, Bagnolesi P, Moretti M et al (1997) Comparison of the diagnostic performance of high-frequency ultrasound as a first- or second-line diagnostic tool in non-palpable lesions of the breast. Eur Radiol 7: 1240–1244Google Scholar
  5. Gordon PB, Goldenberg SL (1995) Malignant breast masses detected only by ultrasound. A retrospective review. Cancer 76: 626–630Google Scholar
  6. Hackelöer B-J, Duda V, Lauth G (1986) Ultraschall-Mammographie – Methoden, Ergebnisse, diagnostische Strategien. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  7. Kolb TM, Lichy J, Newhouse JH (1998) Occult cancer in women with dense breasts: detection with screening US-diagnostic yield and tumor characteristics. Radiology 207: 191–199Google Scholar
  8. Madjar H (2002) Geräterichtlinien für die Mammasonographie. Ultraschall Med 23: 63–64Google Scholar
  9. Potterton AJ, Peakman DH, Young IR (1994) Ultrasound demonstration of small breast cancers detected by mammographic screening. Clin Radiol 49:808Google Scholar
  10. Ruhland F, Heinrich J, Budner M, Jeschke A (2000) Diagnostische Wertigkeit von Mammographie und Mammasonographie bei klinisch okkulten Mammaläsionen. Geburtsh Frauenheilkd 60: 104–110Google Scholar
  11. Teh W, Wilson ARM (1998) The role of ultrasound in breast cancer screening. A consensus statement by the European Group for Breast Cancer Screening. Eur J Cancer 34: 449–450Google Scholar
  12. Zonderland HM, Coerkamp EG, Hermans J, van de Vijver MJ, van Voorthuisen AE (1999) Diagnosis of breast cancer: Contribution of US as an adjunct to mammography. Radiology 213:413–422Google Scholar

Literatur zu Kap. 6.8

  1. AWMF (2012) Leitlinienprogramm Onkologie, Deutschen Krebsgesellschaft e.V. und Deutschen Krebshilfe e.V.: Interdisziplinäre S3-Leitlinie für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms, AWMF-Register-Nummer: 032-045OL; Berlin, Juli 2012 http://www.awmf.org/uploads/tx_szleitlinien/032-045OL_l_S3__Brustkrebs_Mammakarzinom_Diagnostik_Therapie_Nachsorge_2012-07.pdf
  2. Kooperationsgemeinschaft Mammographie (2013) Arbeitsempfehlung zur Abklärungsdiagnostik auffälliger Befunde im Mammographie-Screening-Programm. August 2013 http://www.fachservice.mammo-programm.de/download/20130808_arbeitshilfeabklaerungsdiagnostik_neuesdesign.pdf
  3. Kooperationsgemeinschaft Mammographie (2015) Evaluationsbericht 2005–2012 – Ergebnis- und Prozessqualität im deutschen Mammographie-Screening- Programm. Berlin, August 2015 http://fachservice.mammo-programm.de/download/Mammographiescreening_Evaluationsbericht_2005 %20bis %202012.pdf

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Karin Bock
    • 1
  • Volker F Duda
    • 2
  • Thomas Fischer
    • 3
  • Astrid Storch
    • 4
  • Anke Thomas
    • 5
  • Christian Weismann
    • 6
  1. 1.Referenzzentrum Mammographie SüdWestUniversitätsklinikum Gießen und MarburgMarburg
  2. 2.Senologische Diagnostik, Klinik für Frauenheilkunde und GeburtshilfeUniversitätsklinikum Gießen und MarburgMarburg
  3. 3.Interdisziplinäres US-Zentrum, Institut für RadiologieCampus Charité MitteBerlin
  4. 4.Frauenklinik am Klinikum KaufbeurenKaufbeuren
  5. 5.Ultraschalllabor, Klinik für Gynäkologie, CharitéUniversitätsmedizin BerlinBerlin
  6. 6.Universitäts-Institut für RadiologieLKH SalzburgÖsterreich

Personalised recommendations