Advertisement

Mammographie

  • Boris Adamietz
  • Ulrike Aichinger
  • Karin Bock
  • Barbara Brehm
  • Klaus-Peter Hermann
  • Martina Meier-Meitinger
  • Manfred Säbel
  • Maria Schürmann
  • Rüdiger Schulz-Wendtland
  • Per Skaane
  • Martina Wabel
  • Evelyn Wenkel

Zusammenfassung

In diesem Kapitel werden die technischen Grundlagen der Röntgenmammographie, die Technik der Einstellung der Patientin, die Befundung und die Entwicklung im Mammographie-Screening dargestellt. Nach der Erläuterung der technischen Zusammenhänge und wichtiger Aspekte der Befunddokumentation werden dabei auch kritische Einwendungen diskutiert und mögliche Neuentwicklungen besprochen.

Literatur

Literatur zu Kap. 4.14.3

  1. Aichinger H, Dierker J, Säbel M, Joite-Barfuß S (1994) Image quality and dose in mammography. Electromedica 62: 7–11Google Scholar
  2. BÄK (Bundesärztekammer) (2007) Leitlinien der Bundesärztekammer zur Qualitätssicherung in der Röntgendiagnostik – Qualitätskriterien röntgendiagnostischer Untersuchungen, gemäß Beschluss des Vorstandes der Bundesärztekammer vom 23. November 2007Google Scholar
  3. BEIR V (Committee on the Biological Effects of Ionizing Radiation) (1990) Health Effects of Exposure to Low Levels of Ionizing Radiation, National Academic Press, Washington D.C.Google Scholar
  4. Blendl C, Hermann K-P, Mertelmeier T (2005) Anforderungen und Prüfverfahren für digitale Mammographie-Einrichtungen, PAS 1054. Beuth, BerlinGoogle Scholar
  5. CEC (Commission of the European Communities) (1996) European protocol on dosimetry in mammography, Report EUR 16263 CEC, LuxemborgGoogle Scholar
  6. CEC (Commission of the European Communities) (2006) European Protocol for the Quality Control of the Physical and Technical Aspects of Mammography Screening. In: CEC (Hrsg) European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis, 4th edn. CEC, LuxemburgGoogle Scholar
  7. Dance DR (1990) Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose, Phys Med Biol 35:1211–1219Google Scholar
  8. Dance DR, Skinner CL, Young KC et al (2000) Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol, Phys Med Biol 45: 3225–3240Google Scholar
  9. Dance DR, Young KC, van Engen RE (2009) Further factors for the estimation of mean glandular dose using the United Kingdom, European and IAEA breast dosimetry protocols, Phys Med Biol 54:4361–43729Google Scholar
  10. Fischer U, Hermann K-P, Baum F (2006) Digital mammography: current state and future aspects. Eur Radiol 16:38–44Google Scholar
  11. Jung H (1998) Mammographie und Strahlenrisiko, Fortschr Röntgenstr 169:336–343Google Scholar
  12. Jung H (2001) Abschätzung von Nutzen und Risiko eines Mammographiescreenings unter ausschließlichem Bezug auf das Strahlenrisiko. Radiologe 41: 385–395Google Scholar
  13. Klein R, Aichinger H, Dierker J et al (1997) Determination of average glandular dose with modern mammography units for two large groups of patients. Phys Med Biol 42: 651–671Google Scholar
  14. Loos C, Buhr H, Blendl C (2013) Investigation of the Performance of Digital Mammographic X-Ray Equipment: Determination of Noise Equivalent Quanta (NEQQC) and Detective Quantum Efficiency (DQEQC) Compared with the Automated Analysis of CDMAM Test Images with CDCOM and CDIC Programs. Fortschr Röntgenstr 185: 635–643Google Scholar
  15. Neitzel U (1998) Grundlagen der digitalen Bildgebung. In: Ewen K (Hrsg) Moderne Bildgebung. Thieme, Stuttgart, S 63–76Google Scholar
  16. Nekolla EA, Griebel J, Brix G (2008) Strahlenrisiko infolge von Mammographie-Screening-Untersuchungen für Frauen unter 50 Jahren, Z Med Phys 18:170–179Google Scholar
  17. Pisano E, Gatsonis C, Hendrick E et al (2006) Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353:1773–1783Google Scholar
  18. QL-Richtlinie (2014) Richtlinie zur Durchführung der Qualitätssicherung bei Röntgeneinrichtungen zur Untersuchung oder Behandlung von Menschen nach den §§ 16 und 17 der Röntgenverordnung vom 23. Juni 2014Google Scholar
  19. RöV (2003) Röntgenverordnung – Verordnung über den Schutz vor Schäden durch Röntgenstrahlung vom 30.4.2003. BGBl I 2003, 604Google Scholar
  20. Säbel M, Aichinger H (1996) Recent developments in breast imaging. Phys Med Biol 41:315–68Google Scholar
  21. Säbel M, Aichinger U, Schulz-Wendtland R (2001) Die Strahlenexposition bei der Röntgen-Mammographie. Fortschr Röntgenstr 173:79–91Google Scholar
  22. Säbel M, Schulz-Wendtland R (2002) Vergrößerungstechnik. In: Schmidt, Freyschmidt (Hrsg) Handbuch Diagnostische Radiologie, Bd 1. Springer, Berlin Heidelberg New York Tokio, S 180–185Google Scholar
  23. Schulz-Wendtland R, Fuchsjäger M, Wacker T, Hermann K-P (2009) Digital mammography: An update. Eur J Radiol 72:258–265Google Scholar
  24. Schulz-Wendtland R, Hermann K-P, Uder M (2010) Digitale Tomosynthese der Brust, Radiologie up2date 3:195–205Google Scholar
  25. Yaffe MJ, Mainprize JG (2011) Risk on Radiation-induced Brest Cancer from Mammographic Screening, Radiology 258:98–105Google Scholar

Literatur zu Kap. 4.4

  1. Mammographie-Vereinbarung (2011) Vereinbarung von Qualitätssicherungsmaßnahmen nach § 135 Abs. 2 SGB V zur kurativen Mammographie. Dtsch Ärzteblatt 108:A791–A803Google Scholar
  2. Perry N, Broeders M, de Wolf C et al (2006) European guidelines for quality assurance in breast cancer screening and diagnosis, 4th ed. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  3. Richtlinie zu Aufzeichnungspflichten (2006) nach den §§ 18, 27, 28 und 36 der Röntgenverordnung und Bekanntmachung zum Röntgenpass vom 31.07. 2006 (GMBl. 2006, Nr. 53, 1051)Google Scholar
  4. Rijken H et al (2000) Positionierungstechnik in der Mammographie. Thieme, StuttgartGoogle Scholar
  5. Wülfing U, Pfandzelter R, Kettritz U, Siekmann M, Hurtienne B, Verloh C (2011) Mammographien regelgerecht erstellen – Hinweise für die Erstellung von Mammographien auf der Grundlage einer Mängelanalyse der Kassenärztlichen Bundesvereinigung. Kassenärztliche Bundesvereinigung (KBV), BerlinGoogle Scholar

Literatur zu Kap. 4.5

  1. American College of Radiology (2016) ACR BI-RADS®-Atlas der Mammadiagnostik. Übersetzung der 5. englischen Ausgabe. Springer, Berlin HeidelbergGoogle Scholar
  2. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA et al (2013) ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of Radiology, Reston, VAGoogle Scholar
  3. Hendriks JHCL, Dronkers DJ, Rosenbusch G (1999) Anatomie. In: Dronkers DJ, Hendriks JHCL, Holland R, Rosenbusch G (Hrsg) Radiologische Mammadiagnostik. Thieme, StuttgartGoogle Scholar
  4. Kreienberg R, Albert US, Follmann M, Kopp IB, Kühn T, Wöckel A (2012) Interdisziplinäre S3-Leitline für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms, 3. Aufl, Leitlinienprogramm Onkologie der AWMF, Deutsche Krebsgesellschaft e.V. und Deutsche Krebshilfe e.V.Google Scholar
  5. Prechtel K (1971) Mastopathie und altersabhängige Brustdrüsenveränderungen. Fortschr Med 89: 1312–1315Google Scholar

Literatur zu Kap. 4.6 und 4.7

  1. Acton QA (2013) Breast Cancer: New Insights for the Healthcare Professional. Edition is a ScholarlyEditions™. Q A ActonGoogle Scholar
  2. Berg WA, Yang WT (2013) Breast. 2. Aufl, Amirsys, Manitoba, CanadaGoogle Scholar
  3. Birke S, Schulz-Wendtland R, Wenkel E (2006) Mammographic and ultrasonographic features of metastases of malignant melanoma of the breast. Rofo 178(9): 919–921Google Scholar
  4. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA et al (2013) ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of Radiology, Reston, VAGoogle Scholar
  5. Fallenberg, EM, Dimitrijevic L, Diekmann F, Diekmann S, Kettritz U, Poellinger A, Bick U, Winzer KJ, Engelken F, Renz D M (2014a) Impact of magnification views on the characterization of microcalcifications in digital mammography. Rofo 186(3):274–280Google Scholar
  6. Fallenberg EM, Dromain C, Diekmann F, Renz D M, Amer H, Ingold-Heppner B, Neumann AU, Winzer K J, Bick U, Hamm B, Engelken F (2014b) Contrast-enhanced spectral mammography: Does mammography provide additional clinical benefits or can some radiation exposure be avoided? Breast Cancer Research and Treatment 146(2):71–381Google Scholar
  7. Houssami N, Skaane P (2013) Overview of the evidence on digital breast tomosynthesis in breast cancer detection. Breast 22(2):101–108Google Scholar
  8. Kaltenbach B, Brandenbusch V, Möbus V, Mall G, Falk S et al. (2017) A matrix of morphology and distribution of calcifications in the breast: Analysis of 849 vacuum-assisted biopsies. Eur J Radiol 86:22–1226Google Scholar
  9. Kolb TM, Lichy J, Newhouse JH (2002) Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225(1):165–175Google Scholar
  10. Lin RS, Plevritis SK (2012) Comparing the benefits of screening for breast cancer and lung cancer using a novel natural history model. Cancer Causes Control 23(1):175–185Google Scholar
  11. Müller-Schimpfle, M, DRG (2008) Consensus meeting of course experts in breast diagnosis 5 May 2007 in Frankfurt am Main--topic: microcalcinosis. Rofo 180(1):66–68Google Scholar
  12. Müller-Schimpfle MP, Heindel W, Kettritz U, Schulz-Wendtland R, Bick U (2010) Consensus Meeting of Course Directors in Breast Imaging, 9 May 2009, in Frankfurt am Main – Topic: Masses. Rofo 182(8):671–675Google Scholar
  13. Müller-Schimpfle M, Graf O, Madjar H, Fuchsjäger M, Golatta M et al. (2016) Diskussionspapier – BI-RADS die 5. – eine Kurzmitteilung aus deutsch-österreichischer Sicht. Geburtshilfe Frauenheilkd 76(5):490–496Google Scholar
  14. Skaane P, Skjennald A (2004) Screen-film mammography versus full-field digital mammography with soft-copy reading: randomized trial in a population-based screening program – the Oslo II Study. Radiology 232(1):197–204Google Scholar
  15. Souza FH, Wendland EM, Rosa MI, Polanczyk CA (2013) Is full-field digital mammography more accurate than screen-film mammography in overall population screening? A systematic review and meta-analysis. Breast 22(3):217–224Google Scholar
  16. Tabar L (2012) Teaching Atlas of Mammography. Thieme, StuttgartGoogle Scholar
  17. Zuley ML, Bandos AI, Ganott MA, Sumkin JH, Kelly AE, Catullo VJ, Rathfon GY, Lu AH, Gur D (2013) Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions. Radiology 266(1):89–95Google Scholar

Literatur Kap. 4.8 und 4.9

  1. American College of Radiology (2016) ACR BI-RADS®-Atlas der Mammadiagnostik. Übersetzung der 5. englischen Ausgabe. Springer, Berlin HeidelbergGoogle Scholar
  2. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA et al (2013) ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of Radiology, Reston, VAGoogle Scholar
  3. Heywang-Köbrunner SH, Schreer I (1996) Bildgebende Mammadiagnostik. Thieme, StuttgartGoogle Scholar
  4. Willemin (1972) Les images mammographiques. Karger, BaselGoogle Scholar

Literatur zu Kap. 4.10

    Literatur zu Kap. 4.10.14.10.3

    1. Boncz I, Sebestyen A, Dobrossy L, Pentek Z, Budai A, Kovacs A, Dozsa C, Ember I (2007) The organisation and results of first screening round of the Hungarian nationwide organised breast cancer screening programme. Ann Oncology 18,4 :795–9Google Scholar
    2. Gershon-Cohen J, Ingleby H (1958) Roentgen survey of asymptomatic breasts. Surgery 43:408–414Google Scholar
    3. Giordano I, Giorgi D, Piccini P, Ventura I, Stefanini V, Senore C, Paci E, Segnan N (2008) Time trends of process and impact indicators in Italian breast screening programmes – 1996-2005. Epidemiol Prev 32(2)1:23–36Google Scholar
    4. Hofvins S, Ursin G, Tretli S et al (2013) Breast cancer mortality in participants of the Norwegian breast cancer screening program. Cancer 119:3106–3112Google Scholar
    5. IARC (2002) Handbooks of Cancer Prevention. Volume 7: Breast Cancer Screening. Chapter Use of breast cancer screening, pp. 47–86. IARC Press, LyonGoogle Scholar
    6. Kooperationsgemeinschaft Mammographie (2009) Evaluationsbericht 2005-2007. Ergebnisse des Mammographie-Screening Programms in Deutschland. KölnGoogle Scholar
    7. Lewin JM, Hendrick RE, D’Orsi CJ et al (2001) Comparison of full-field digital mammography with screen-film mammography for cancer detection: Results of 4,945 paired examinations. Radiology 218:873–880Google Scholar
    8. Perry N, Broeders M, de Wolf C, Tornberg S, Holland R, von Karsa L (Hrsg) European guidelines for quality assurance in breast cancer screening and diagnosis. 4th edition European Communities Luxembourg, European Commission, 2006Google Scholar
    9. Pisano ED, Gatsonis C, Hendrick E et al (2005) Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353:1773–1783Google Scholar
    10. Sarkela T (2008) Performance and Effectiveness of Organised Breast Cancer Screening in Finland. Dissertation. Universität Tampere, Finnland, S. 27Google Scholar
    11. Shapiro S, Strax P, Venet L (1971) Periodic breast cancer screening in reducing mortality from breast cancer. JAMA 215:1777–1785Google Scholar
    12. Shapiro S, Venet W, Venet L et al (1982) Ten- to fourteen-year effect of screening on breast cancer mortality. J Natl Cancer Inst 69:349–355Google Scholar
    13. Skaane P (2009) Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: Updated review. Acta Radiol 50:3–14Google Scholar
    14. Skaane P, Skjennald A (2004) Screen-film mammography versus full-field digital mammography with soft-copy reading: Randomized trial in a population-based screening program – The Oslo II study. Radiology 232:197–204Google Scholar
    15. Skaane P, Young K, Skjennald A (2003) Population-based mammography screening: Comparison of screen-film mammography and full-field digital mammography using soft-copy reading: The Oslo I study. Radiology 229:877–884Google Scholar
    16. Tabar L, Chen HH T, Amy Yen MF et al (2004) Mammographic tumor features can predict long-term outcomes reliably in women with 1-14 mm invasive breast carcinoma. Cancer 101:1745–1759Google Scholar
    17. Tabar L, Fagerberg CJG, Gad A et al (1985) Reduction in mortality from breast cancer after mass screening with mammography. Lancet I:829–832Google Scholar
    18. Tabar L, Vitak B, Chen HHT, et al (2001) Beyond randomized controlled trials. Organized mammographic screening substantially reduces breast carcinoma mortality. Cancer 91:1724–1731Google Scholar

    Literatur zu Kap. 4.10.4

    1. Heidinger O, Batzler WU, Krieg V et al (2012) The incidence of interval cancers in the German mammography screening program – results from the population-based cancer registry in North Rhine–Westphalia. Dtsch Arztebl Int 109(46):781–787Google Scholar
    2. Hense H-W, Katalinic A, Lebau A et al (2011) Verfahren zur Bewertung der Wirksamkeit des Deutschen Mammographie-Screening-Programms auf die Senkung der Sterblichkeit durch Brustkrebs: Stellungnahme des Wissenschaftlichen Gremiums des Beirates der Kooperationsgemeinschaft Mammographie, http://www.mammo-programm.de/cms_upload/datenpool/phasen_mortalitaetsevaluation_wiss_gremium_stellungnahme.pdf
    3. Kooperationsgemeinschaft Mammographie (2015) Evaluationsbericht 2005–2012 – Ergebnis- und Prozessqualität im deutschen Mammographie-Screening- Programm. Berlin, August 2015 http://fachservice.mammo-programm.de/download/Mammographiescreening_Evaluationsbericht_2005%20bis%202012.pdf
    4. Pisano ED, Gatsonis C, Hendrick E (2005) Diagnostic Performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353:1773–83Google Scholar
    5. Simbrich A, Wellmann I, Heidrich J, Heidinger O, Hense HW (2016) Trends in advanced breast cancer incidence rates after implementation of a mammography screening program in a German population. Cancer Epidemiol 44:44–51. doi:  10.1016/j.canep.2016.07.006. Epub 2016 Jul 25
    6. Skaane P, Skjennald A (2004) Screen-film mammography versus full-field digital mammography with soft-copy reading: randomized trial in a population-based screening program – the Oslo II study. Radiology 232:197–204Google Scholar
    7. Törnberg S, Kemetli L, Ascunce N et al (2010) A pooled analysis of interval cancer rates in six European countries. Eur J Cancer Prev 19:87–93, DOI: 10. 1097/CEJ. 0b013e32833548edGoogle Scholar

    Literatur zu Kap. 4.10.5

    1. Berg WA, Blume JD, Cormack JB et al (2008) Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 299:2151–2163Google Scholar
    2. Corsetti V, Houssami N, Ferrari A et al (2008) Breast screening with ultrasound in women with mammography-negative dense breasts: Evidence on incremental cancer detection and false positives, and associated cost. Eur J Cancer 44:539–544Google Scholar
    3. Deutsches Konsortium, familiärer Brust- und Eierstockkrebs (2016) Interdisziplinäre S3-Leitlinien für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms, Langversion 3.0, 2012Google Scholar
    4. Hooley RJ, Greenberg KL, Stackhouse RM et al (2012) Screening US in patients with mammographically dense breasts: Initial experience with Connecticut Public Act 09-41. Radiology 265:59–69Google Scholar
    5. Kriege M, Brekelmans CTM, Boetes C et al (2004) Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 351:427–437Google Scholar
    6. Kuhl CK, Schrading S, Bieling HB et al (2007) MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 370:485–492Google Scholar
    7. Kuhl CK, Schrading S, Leutner CC et al (2005) Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol 23:8469–8476Google Scholar
    8. Nothacker M, Duda V, Hahn M, Warm M, Degenhardt F, Madjar H, Weinbrenner S, Albert US (2009) Early detection of breast cancer: benefits and risks of supplemental breastultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review. BMC Cancer 9:335. doi:  10.1186/1471-2407-9-335
    9. Oberaigner W, Buchberger W, Frede T, et al (2011) Introduction of organised mammography screening in Tyrol: results of a one-year pilot phase. BMC Public Health 11:91Google Scholar
    10. Weigel S, Biesheuvel C, Berkemeyer S, Kugel H, Heindel W (2013) Digital mammography screening: how many breast cancers are additionally detected by bilateral ultrasound examination during assessment? Eur Radiol 23(3):648–691Google Scholar

    Literatur zu Kap. 4.10.6

    1. Aarøe J, Lindahl T, Dumeaux V et al (2010) Gene expression profiling of peripheral blood cells for early detection of breast cancer. Breast Cancer Res 12:R71–11Google Scholar
    2. Berg WA, Weinberg IN, Narayanan D et al (2006) High-resolution fluorodeoxyglucose positron emission tomography with compression (Positron Emission Mammography”) is highly accurate in depicting primary breast cancer. Breast J 12:309–323Google Scholar
    3. Ciatto S, Houssami N, Bernardi D et al (2013) Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol 14:583–589Google Scholar
    4. Fang Q, Selb J, Carp SA et al (2011) Combined optical and X-ray tomosynthesis breast imaging. Radiology 258:89–97Google Scholar
    5. Freer TW, Ulissey MJ (2001) Screening mammography with computer-aided detection: Prospective study of 12,860 patients in a community breast center. Radiology 220:781–786Google Scholar
    6. Friedewald SM, Rafferty EA, Rose SL et al (2014) Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA 311:2499–2507Google Scholar
    7. Gilbert FJ, Astley SM, Gillan MGC, et al (2008) Single reading with computer-aided detection for screening mammography. N Engl J Med 359:1675–1684Google Scholar
    8. Greenberg JS, Javitt MC, Katzen J, Michael S, Holland AE (2014) Clinical performance metrics of 3D digital breast tomosynthesis compared with 2D digital mammography for breast cancer screening in community practice. Am J Roentgenol AJR 203:1–7Google Scholar
    9. Haas BM, Kalra V, Geisel J, Raghu M, Durand M, Philpotts LE (2013) Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology 269:694–700Google Scholar
    10. Hofvind S, Geller BM, Rosenberg RD et al (2009) Screening-detected breast cancers: Discordant independent double reading in a population-based screening program. Radiology 253:652–660Google Scholar
    11. Kalender WA, Beister M, Boone JM et al (2012) High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations. Eur Radiol 22:1–8Google Scholar
    12. Kelly KM, Dean J, Comulada WS et al (2010) Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol 20:734–742Google Scholar
    13. Kopans DB (2004) Sonography should not be used for breast cancer screening until its efficacy has been proven scientifically. Am J Roentgenol 182:489–491Google Scholar
    14. Rose SL, Tidwell AL, Bujnoch LJ, Kushwaha AC, Nordmann AS, Sexton R (2013) Implementation of breast tomosynthesis in a routine screening practice: An observational study. Am J Roentgenol AJR 200:1401–1408Google Scholar
    15. Schneider P, Piper S, Schmitz CH et al (2011) Fast 3D near-infrared breast imaging using indocyanine green for detection and characterization of breast lesions. Fortschr Roentgenstr 183:956–963Google Scholar
    16. Skaane P, Bandos AI, Eben EB et al (2014) Two-view digital breast tomosynthesis screening with synthetically reconstructed projection images: Comparison with digital breast tomosynthesis with full-field digital mammographic images. Radiology 271:655–663Google Scholar
    17. Skaane P, Bandos AI, Gullien R et al (2013a) Prospective trial comparing full-field digital mammography (FFDM) versus combined FFDM and tomosynthesis in a population-based screening programme using independent double reading with arbitration. Eur Radiol 23:2061–2071Google Scholar
    18. Skaane P, Bandos AI, Gullien R, et al (2013b) Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology 267:47–56Google Scholar
    19. Skaane P, Gullien R, Eben EB et al (2015) Interpretation of automated breast ultrasound (ABUS) with and without knowledge of mammography: a reader performance study. Acta Radiol 56:404–412Google Scholar
    20. Skaane P, Kshirsagar A, Hofvind S et al (2012) Mammography screening using independent double reading with consensus: Is there a potential benefit for computer-aided detection? Acta Radiol 53:241–248Google Scholar
    21. Skaane P, Kshirsagar A, Stapleton S, et al (2007) Effect of computer-aided detection on independent double reading of paired screen-film and full-field digital screening mammograms. Am J Roentgenol 188:377–384Google Scholar
    22. Wang H-Y, Jiang Y-X, Zhu Q-L et al (2012) Differentiation of benign and malignant breast lesions : A comparison between automatically generated breast volume scans and handheld ultrasound examinations. Eur J Radiol 81:3190–3200Google Scholar
    23. Wenkel E, Heckmann M, Heinrich M et al (2008) Automated breast ultrasound: Lesion detection and BI-RADS classification – a pilot study. Fortschr Roentgenstr 180:804–808Google Scholar
    24. Williams MB, Judy PG, Gunn S et al (2010) Dual-modality breast tomosynthesis. Radiology 255:191–198Google Scholar
    25. Zhi W, Gu X, Qin J et al (2012) Solid breast lesions: Clinical experience with US-guided diffuse optical tomography combined with conventional US. Radiology 262:371–378Google Scholar
    26. Zuley ML, Guo B, Catullo VJ et al (2014) Comparison of two-dimensional synthesized mammograms versus original digital mammograms alone and in combination with tomosynthesis images. Radiology 271:664–671Google Scholar

    Literatur zu Kap. 4.10.7

    1. Bredal IS, Kåresen R, Skaane P et al (2013) Recall mammography and psychological distress. Eur J Cancer 49:805–811Google Scholar
    2. Gelder R, Heijnsdijk EAM, Ravesteyn NT et al (2011) Interpreting overdiagnosis estimates in population-based mammography screening. Epidemiol Rev 33:111–121Google Scholar
    3. Gur D, Sumkin JH (2013) Screening for early detection of breast cancer: Overdiagnosis versus suboptimal patient management. Radiology 268:327–328Google Scholar
    4. Hofvind S, Thoresen S, Tretli S (2004) The cumulative risk of a false-positive recall in the Norwegian breast cancer screening program. Cancer 101:1501–1507Google Scholar
    5. Jørgensen KJ, Keen JD, Gøtzsche PC (2011) Is mammographic screening justifiable considering its substantial overdiagnosis rate and minor effect on mortality? Radiology 260:621–627Google Scholar
    6. Puliti D, Duffy SW, Miccinesi G et al (2012) Overdiagnosis in mammographic screening for breast cancer in Europe: a literature review. J Med Screen 19(1):42–56Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Boris Adamietz
    • 1
  • Ulrike Aichinger
    • 2
  • Karin Bock
    • 3
  • Barbara Brehm
    • 4
  • Klaus-Peter Hermann
    • 5
  • Martina Meier-Meitinger
    • 4
  • Manfred Säbel
    • 4
  • Maria Schürmann
    • 6
  • Rüdiger Schulz-Wendtland
    • 6
  • Per Skaane
    • 7
  • Martina Wabel
    • 6
  • Evelyn Wenkel
    • 6
  1. 1.Radiologie am HerkomerplatzMünchen
  2. 2.RADIO-LOGPassau
  3. 3.Referenzzentrum Mammographie SüdWestUniversitätsklinikum Gießen und MarburgMarburg
  4. 4.Radiologisches InstitutUniversitätsklinikum ErlangenErlangen
  5. 5.Hermann Institut für Diagnostische und Interventionelle RadiologieUniversitätsmedizin GöttingenGöttingen
  6. 6.Radiologisches Institut/Gynäkologische RadiologieUniversitätsklinikum ErlangenErlangen
  7. 7.Department of RadiologyOslo University Hospital UllevaalNorwegen

Personalised recommendations