Skip to main content

Zukünftige Entwicklungen in der Bildgebung

  • Chapter
Mammadiagnostik

Zusammenfassung

Die Zukunft technischer Entwicklungen vorhersagen zu wollen ist immer auf einer subjektiven Einschätzung begründet und daher naturgemäß schwierig. Um die Zukunft der Bildgebung abschätzen zu können, wird jeweils die aktuelle Situation beleuchtet und davon ausgehend mögliche Entwicklungen dargestellt. Dabei ist ein zentraler Punkt die heute mithilfe von Computersystemen erhobene umfangreiche Menge von Patientendaten, die mit bestehenden Techniken neu verknüpft werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Literatur zu Abschn. 10.1

  • AWMF (2012) Interdisziplinäre S3-Leitlinie für die Diagnostik, herapie und Nachsorge des Mammakarzinoms. AWMF-Register Nr. 032-045 OL

    Google Scholar 

  • Baltzer P A T, Yang F, Dietzel M, Herzog A, Simon A, Vag T et al (2010) Sensitivity and specificity of unilateral edema on T2w-TSE sequences in MR-Mammography considering 974 histologically verified lesions. Breast J 16(3):233–239

    Google Scholar 

  • Boyd D, (2015) Privacy and Publicity in the Context of Big Data [Online] Verfügbar unter: http://www.danah.org/papers/talks/2010/WWW2010.html [Zugegriffen: 30-Dez-2015]

  • Dietzel M, Baltzer P A T, Vag T, Gröschel T, Gajda M, Camara O, Kaiser W A (2010) Application of breast MRI for prediction of lymph node metastases – systematic approach using 17 individual descriptors and a dedicated decision tree. Acta Radiol 51(8):885-894

    Google Scholar 

  • Dietzel M, Baltzer P A, Vag T, Zoubi R, Gröschel T, Burmeister H, Gajda M et al (2011) Potential of MR mammography to predict tumor grading of invasive breast cancer. RoFo 183( 9):826–833

    Google Scholar 

  • Eccles S A, Aboagye E O, Ali S, Anderson A S, Armes J, et al (2013) Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer, Breast Cancer Res BCR, 15(5)R92

    Google Scholar 

  • Guestini F, McNamara K M, Ishida T, Sasano H (2015) Triple Negative Breast Cancer Chemosensitivity and Chemoresistance: Current Advances in Biomarkers Indentification, Expert Opin Ther Targets

    Google Scholar 

  • Hood L, Friend S H (2011) Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 8(3):184–187

    Google Scholar 

  • Leskovec J, Rajaraman A, Ullman J D (2014) Mining of Massive Datasets, 2 Aufl Cambridge, Cambridge University Press

    Google Scholar 

  • Nienhuis H H, Gaykema S B M, Timmer-Bosscha H, Jalving M, Brouwers A H et al (2015) Targeting breast cancer through its microenvironment: current status of preclinical and clinical research in finding relevant targets. Pharmacol Ther 147:63–79

    Google Scholar 

  • Pinker K, Helbich T, Magometschnigg H, Fueger B, Baltzer P (2014) Molecular breast imaging : An update. Radiol 54(3):241–253

    Google Scholar 

Literatur zu Abschn. 10.2

  • Baselga J et al (2015) PIK3CA Status in Circulating Tumor DNA Predicts Efficacy of Buparlisib Plus Fulvestrant in Postmenopausal Women With Endocrine-resistant HR+/HER2– Advanced Breast Cancer: First Results From the Randomized, Phase III BELLE-2 Trial. San Antonio Breast Cancer Symposium SS 6–01

    Google Scholar 

  • Bundesministerium für Bildung und Forschung (2015) Begleitende Evaluierung des Förderinstruments »Spitzencluster-Wettbewerb« des BMBF. http://www.rwi-essen.de/media/content/pages/publikationen/rwi-projektberichte/RWI-PB_Spitzencluster.pdf

  • Bundesministerium für Wirtschaft und Energie (2014) »Smart Data« – Projekte des neuen BMWi-Technologieprogramms sind ausgewählt, http://www.bmwi.de/DE/Presse/pressemitteilungen,did=642872.html

  • Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Google Scholar 

  • Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615

    Google Scholar 

  • Cancer Genome Atlas Research Network et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497(7447):67–73

    Google Scholar 

  • Cheang MC et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101(10):736–750

    Google Scholar 

  • Cortazar P et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–172

    Google Scholar 

  • Couch FJ et al (2015) Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol 33(4):304–311

    Google Scholar 

  • Fasching PA et al (2012) The role of genetic breast cancer susceptibility variants as prognostic factors. Hum Mol Genet 21(17):3926–3939

    Google Scholar 

  • Fasching PA et al (2013) Breast Cancer Risk – From Genetics to Molecular Understanding of Pathogenesis. Geburtshilfe Frauenheilkd 73(12):1228–1235

    Google Scholar 

  • Google Inc. (2012) Introducing the Knowledge Graph: things, not strings. http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

  • Google Inc. (2015) A remedy for your health-related questions: health info in the Knowledge Graph http://googleblog.blogspot.nl/2015/02/health-info-knowledge-graph.html

  • Häberle L et al (2012) Characterizing mammographic images by using generic texture features. Breast Cancer Res 14(2):R59

    Google Scholar 

  • Häberle L et al (2016) Mammographic density is the main correlate of tumors detected on ultrasound but not on mammography. Int J Cancer 139(9):1967–1974

    Google Scholar 

  • Katzorke N et al (2013) Prognostic value of HER2 on breast cancer survival. J Clin Oncol 31 (suppl; abstr 640)

    Google Scholar 

  • Kojima Y, Tsunoda H (2011) Mammography and ultrasound features of triple-negative breast cancer. Breast Cancer 18(3):146–151

    Google Scholar 

  • Kojima Y et al (2011) Radiographic features for triple negative ductal carcinoma in situ of the breast. Breast Cancer 18(3):213–220

    Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Google Scholar 

  • Mavaddat N et al (2015) Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst 107(5). pii: djv036. doi: 10.1093/jnci/djv036

  • Meier-Meitinger M et al (2012) Accuracy of radiological tumour size assessment and the risk for re-excision in a cohort of primary breast cancer patients. Eur J Surg Oncol 44–51

    Google Scholar 

  • Nolan E et al (2016) RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat Med 22(8):933–939

    Google Scholar 

  • Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 747–52

    Google Scholar 

  • Purrington KS et al (2014) Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 1012–9

    Google Scholar 

  • Sigl V et al (2016) RANKL/RANK control Brca1 mutation-driven mammary tumors. Cell Res 761–74

    Google Scholar 

  • Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 790–800

    Google Scholar 

  • Vachon CM et al (2015) The contributions of breast density and common genetic variation to breast cancer risk. J Natl Cancer Inst 107(5). pii: dju397. doi: 10.1093/jnci/dju397

  • Venter JC et al (2001) The sequence of the human genome. Science 1304–51

    Google Scholar 

  • Yaghjyan L et al (2011) Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. J Natl Cancer Inst 1179–89

    Google Scholar 

Literatur zu Abschn. 10.4

  • Anton G, Bayer F, Beckmann M W, Durst J, Fasching P A, Haas W et al (2013) Grating-based dark-field imaging of human breast tissue; ZMP 23, 228

    Google Scholar 

  • Bech M, Jensen TH, Feidenhaus R, Bunk O, David C, Pfeiffer F (2009) Soft-tissue phase-contrast tomography with an x-ray tube source; Phys Med Biol 54:2747

    Google Scholar 

  • David C, Nöhammer B, Solak H H, Ziegler E (2002) Differential x-ray phase contrast imaging using a shearing interferometer; Applied Physics Letters 81(17):3287–3289

    Google Scholar 

  • Donath T, Pfeiffer F, Bunk O, Grünzweig C, Hempel E, Popescu S, Vock P, David C (2010) Toward clinical x-ray phase-contrast ct: demonstration of enhanced soft-tissue contrast in human specimen; Investigative radiology 45(7):445–452

    Google Scholar 

  • Michel T, Rieger J, Anton G, Bayer F, Beckmann M W, Durst J et al (2013) On a dark-field signal generated by micrometer sized calcifications in phase-contrast mammography; Phys Med Biol 58:2713

    Google Scholar 

  • Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y (2003) Demonstration of x-ray talbot interferometry; Jpn J Appl Phys 42( 2;7B)L866–L868

    Google Scholar 

  • Pelzer G, Zang A, Anton G, Bayer F, Horn F, Kraus FM et al (2014) Energy weighted x-ray dark-field imaging; Optics Express 22(20):24507–24515

    Google Scholar 

  • Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Bronnimann C, Grunzweig C, David C (2008) Hard-x-ray dark-field imaging using a grating interferometer; Nat Mater 7(2):134–137

    Google Scholar 

  • Pfeiffer F, Bunk O, David C, Bech M, Le Duc G, Bravin A, Cloetens P (2007) Highresolution brain tumor visualization using three-dimensional x-ray phase contrast tomography; Physics in medicine and biology 52(23):6923

    Google Scholar 

  • Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phasecontrast imaging with low-brilliance x-ray sources; Nature Phys 2:258–261

    Google Scholar 

  • Pinzer B, Cacquevel M, Modregger P, McDonald S, Bensadoun J, Thuering T, Aebischer P, Stampanoni M (2012) Imaging brain amyloid deposition using grating-based differential phase contrast tomography; Neuroimage 61:1336–1346

    Google Scholar 

  • Reznikova E, Mohr J, Boerner M, Nazmov V, Jakobs P (2008) Soft X-ray lithography of high aspect ratio SU8 submicron structures; Microsystem Technologies 14(9):1683–1688

    Google Scholar 

  • Schleede S, Meinel F G, Bech M, Herzen J, Achterhold K, Potdevin G et al (2012) Emphysema diagnosis using x-ray dark-field imaging at a laser-driven compact synchrotron light source; Proceedings of the National Academy of Sciences (PNAS) 109(44):17880–17885

    Google Scholar 

  • Shinohara M, Yamashita T, Tawa H, Takeda M, Sasaki N, Takaya T et al (2008) Atherosclerotic plaque imaging using phase-contrast x-ray computed tomography; American Journal of Physiology-Heart and Circulatory Physiology 294(2):H1094–H1100

    Google Scholar 

  • Stutman D, Beck T J, Carrino J A, Bingham C O (2011) Talbot phase-contrast x-ray imaging for the small joints of the hand; Phys Med Biol 56(17):5697

    Google Scholar 

  • Takeda M, Yamashita T, Shinohara M, Sasaki N, Tawa H, Nakajima K, Momose A, Hirata K-J (2012) Beneficial effect of anti-platelet therapies on atherosclerotic lesion formation assessed by phaseontrast x-ray ct imaging; The international journal of cardiovascular imaging 28(5):1181– 1191

    Google Scholar 

  • Weitkamp T, David C, Bunk O, Bruder J, Cloetens P, Pfeiffer F (2008) X-ray phase radiography and tomography of soft tissue using grating interferometry; Eur J Radiology 68S:S13–S17

    Google Scholar 

  • Yaroshenko A, Meinel F G, Bech M, Tapfer A, Velroyen A, Schleede S et al (2013) Pulmonary emphysema diagnosis with a preclinical small-animal x-ray dark-field scatter-contrast scanner; Radiology 269:427–433

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Baltzer , P. A. Fasching , J. Emons , R. Schulz-Wendtland , C. Weismann or G. Anton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Anton, G., Baltzer, P., Emons, J., Fasching, P., Schulz-Wendtland, R., Weismann, C. (2017). Zukünftige Entwicklungen in der Bildgebung. In: Duda, V., Schulz-Wendtland, R. (eds) Mammadiagnostik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54263-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54263-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54262-0

  • Online ISBN: 978-3-662-54263-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics