Biomaterials for Tendon Regeneration

  • Nuno SevivasEmail author
  • Guilherme França
  • Nuno Oliveira
  • Hélder Pereira
  • K. W. Ng
  • António Salgado
  • João Espregueira-Mendes


Tendon is a highly complex tissue that exhibits high mechanical strength, flexibility, and extensibility to perform movement and physical exercise. However, it is exposed at a high-risk of injury, namely, at the tendon–bone interface (TBi).

The tendon natural healing process occurs by reactive scar formation, giving origin to a tissue that does not have the same characteristics of native tendon. As a consequence the healing response is suboptimal causing scar tissue formation, which implies inferior mechanical properties.

Tissue engineering using biomaterials trying to regenerate tendon tissue and improve clinical outcomes when treating tendon pathology is the focus of intense investigation worldwide. The authors review tendon structure and healing process and summarize the current knowledge about biomaterials for tendon regeneration.


Mesenchymal Stromal Cell Donor Site Morbidity Composite Scaffold Scar Tissue Formation Fibrous Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altman G, Horan R, Martin I et al (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272PubMedGoogle Scholar
  2. Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat 193(Pt 4):481–494CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benjamin M, Ralphs J (2000) The cell and developmental biology of tendons and ligaments. Int Rev Cytol 196:85–130CrossRefPubMedGoogle Scholar
  4. Breidenbach AP, Gilday SD, Lalley AL et al (2014) Functional tissue engineering of tendon: establishing biological success criteria for improving tendon repair. J Biomech 47:1941–1948CrossRefPubMedGoogle Scholar
  5. Butler DL, Dressler M, Awad H (2003) Functional tissue engineering: assessment of function in tendon and ligament repair. In: Functional tissue engineering. Springer, New York, pp 213–226CrossRefGoogle Scholar
  6. Carpenter JE, Thomopoulos S, Flanagan CL et al (1998) Rotator cuff defect healing: a biomechanical and histologic analysis in an animal model. J Shoulder Elb Surg 7:599–605CrossRefGoogle Scholar
  7. Carvalho MM, Teixeira FG, Reis RL et al (2011) Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine. Curr Stem Cell Res Ther 6:221–228CrossRefPubMedGoogle Scholar
  8. Chen J, Altman GH, Karageorgiou V et al (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67:559–570CrossRefPubMedGoogle Scholar
  9. Chen J, Horan RL, Bramono D et al (2006) Monitoring mesenchymal stromal cell developmental stage to apply on-time mechanical stimulation for ligament tissue engineering. Tissue Eng 12:3085–3095CrossRefPubMedGoogle Scholar
  10. Chen X, Song XH, Yin Z et al (2009) Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells 27:1276–1287CrossRefPubMedGoogle Scholar
  11. Chong AK, Chang J, Go JC (2009) Mesenchymal stem cells and tendon healing. Front Biosci (Landmark Ed) 14:4598–4605CrossRefGoogle Scholar
  12. Cornwell KG, Downing BR, Pins GD (2004) Characterizing fibroblast migration on discrete collagen threads for applications in tissue regeneration. J Biomed Mater Res A 71:55–62CrossRefPubMedGoogle Scholar
  13. Cornwell KG, Lei P, Andreadis ST et al (2007) Crosslinking of discrete self-assembled collagen threads: effects on mechanical strength and cell–matrix interactions. J Biomed Mater Res A 80:362–371CrossRefPubMedGoogle Scholar
  14. Deeken CR, Cozad MJ, Bachman SL et al (2011) Characterization of bionanocomposite scaffolds comprised of amine-functionalized single-walled carbon nanotubes crosslinked to an acellular porcine tendon. J Biomed Mater Res A 96:584–594CrossRefPubMedGoogle Scholar
  15. Deng D, Liu W, Xu F et al (2009) Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials 30:6724–6730CrossRefPubMedGoogle Scholar
  16. Doroski DM, Brink KS, Temenoff JS (2007) Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials 28:187–202CrossRefPubMedGoogle Scholar
  17. Dyment NA, Galloway JL (2015) Regenerative biology of tendon: mechanisms for renewal and repair. Curr Mol Biol Rep 1:124–131CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fan H, Liu H, Toh SL et al (2008) Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold. Biomaterials 29:1017–1027CrossRefPubMedGoogle Scholar
  19. Freeman JW, Woods MD, Laurencin CT (2007) Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. J Biomech 40:2029–2036CrossRefPubMedGoogle Scholar
  20. Freeman JW, Woods MD, Cromer DA et al (2009) Tissue engineering of the anterior cruciate ligament: the viscoelastic behavior and cell viability of a novel braid–twist scaffold. J Biomater Sci Polym Ed 20:1709–1728CrossRefPubMedGoogle Scholar
  21. Garner WL, Mcdonald JA, Koo M et al (1989) Identification of the collagen-producing cells in healing flexor tendons. Plast Reconstr Surg 83:875–879CrossRefPubMedGoogle Scholar
  22. Gerber C, Schneeberger AG, Perren SM et al (1999) Experimental rotator cuff repair. A preliminary study. J Bone Joint Surg Am 81:1281–1290CrossRefPubMedGoogle Scholar
  23. Griffith LG, Naughton G (2002) Tissue engineering--current challenges and expanding opportunities. Science 295:1009–1014CrossRefPubMedGoogle Scholar
  24. Guelcher SA (2008) Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev 14:3–17CrossRefPubMedGoogle Scholar
  25. Guelcher SA, Srinivasan A, Dumas JE et al (2008) Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials 29:1762–1775CrossRefPubMedGoogle Scholar
  26. Hakimi O, Murphy R, Stachewicz U et al (2012) An electrospun polydioxanone patch for the localisation of biological therapies during tendon repair. Eur Cell Mater 24:344–357; discussion 357Google Scholar
  27. Hammoudi TM, Temenoff JS (2011) Biomaterials for regeneration of tendons and ligaments. In: Burdick JA, Mauck RL (eds) Biomaterials for tissue engineering applications: a review of the past and future trends. Springer Vienna, Vienna, pp 307–341CrossRefGoogle Scholar
  28. Hayami JW, Surrao DC, Waldman SD et al (2010) Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J Biomed Mater Res A 92:1407–1420PubMedGoogle Scholar
  29. Heckmann L, Fiedler J, Mattes T et al (2008) Interactive effects of growth factors and three-dimensional scaffolds on multipotent mesenchymal stromal cells. Biotechnol Appl Biochem 49:185–194CrossRefPubMedGoogle Scholar
  30. Hinsenkamp M, Muylle L, Eastlund T et al (2012) Adverse reactions and events related to musculoskeletal allografts: reviewed by the World Health Organisation Project NOTIFY. Int Orthop 36:633–641CrossRefPubMedGoogle Scholar
  31. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524CrossRefPubMedGoogle Scholar
  32. Hope M, Saxby TS (2007) Tendon healing. Foot Ankle Clin 12:553–567CrossRefPubMedGoogle Scholar
  33. Huegel J, Williams AA, Soslowsky LJ (2015) Rotator cuff biology and biomechanics: a review of normal and pathological conditions. Curr Rheumatol Rep 17:476CrossRefPubMedGoogle Scholar
  34. James R, Kesturu G, Balian G et al (2008) Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am 33:102–112CrossRefPubMedGoogle Scholar
  35. Juncosa-Melvin N, Matlin KS, Holdcraft RW et al (2007) Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng 13:1219–1226CrossRefPubMedGoogle Scholar
  36. Khatod M, Amiel D (2003) Ligament biochemistry and physiology. In: Pedowitz R, O’Connor JJ, Akeson WH (eds) Daniel’s knee injuries. Lippincott Williams and Wilkins, Philadelphia, pp 31–42Google Scholar
  37. Khatod M, Akeson W, Amiel D (2003) Ligament injury and repair. In: Pedowitz RA, O’Connor JJ, Akeson WH (eds) Daniel’s knee injuries. Lippincott Williams and Wilkins, Philadelphia, pp 185–201Google Scholar
  38. Khorshidi S, Solouk A, Mirzadeh H et al (2016) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 10:715–738CrossRefPubMedGoogle Scholar
  39. Kirkendall DT, Garrett WE (1997) Function and biomechanics of tendons. Scand J Med Sci Sports 7:62–66CrossRefPubMedGoogle Scholar
  40. Kovacevic D, Rodeo SA (2008) Biological augmentation of rotator cuff tendon repair. Clin Orthop Relat Res 466:622–633CrossRefPubMedPubMedCentralGoogle Scholar
  41. Krampera M, Pizzolo G, Aprili G et al (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–683CrossRefPubMedGoogle Scholar
  42. Kwan KH, Yeung KW, Liu X et al (2014) Silver nanoparticles alter proteoglycan expression in the promotion of tendon repair. Nanomedicine 10:1375–1383CrossRefPubMedGoogle Scholar
  43. Ladermann A, Denard PJ, Collin P (2015) Massive rotator cuff tears: definition and treatment. Int Orthop 39:2403–2414CrossRefPubMedGoogle Scholar
  44. Lange-Consiglio A, Rossi D, Tassan S et al (2013) Conditioned medium from horse amniotic membrane-derived multipotent progenitor cells: immunomodulatory activity in vitro and first clinical application in tendon and ligament injuries in vivo. Stem Cells Dev 22:3015–3024CrossRefPubMedGoogle Scholar
  45. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRefPubMedGoogle Scholar
  46. Laurencin CT, Freeman JW (2005) Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 26:7530–7536CrossRefPubMedGoogle Scholar
  47. Liao S, Chan CK, Ramakrishna S (2008) Stem cells and biomimetic materials strategies for tissue engineering. Mater Sci Eng C 28:1189–1202CrossRefGoogle Scholar
  48. Lorbach O, Baums MH, Kostuj T et al (2015) Advances in biology and mechanics of rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 23:530–541CrossRefPubMedGoogle Scholar
  49. Lui PP (2015) Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells Cloning 7:163–174Google Scholar
  50. Lui PP, Kong SK, Lau PM et al (2014) Allogeneic tendon-derived stem cells promote tendon healing and suppress immunoreactions in hosts: in vivo model. Tissue Eng Part A 20:2998–3009CrossRefPubMedGoogle Scholar
  51. Maffulli N, Wong J, Almekinders LC (2003) Types and epidemiology of tendinopathy. Clin Sports Med 22:675–692CrossRefPubMedGoogle Scholar
  52. Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: insights into the secretome. Biochim Biophys Acta 1834:2380–2384CrossRefPubMedGoogle Scholar
  53. Malafaya PB, Silva GA, Reis RL (2007) Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233CrossRefPubMedGoogle Scholar
  54. Miller R, Azar F (2008) Knee injuries. In: Canale S, Beaty J (eds) Campbell’s operative orthopaedics. Mosby Elsevier, Philadelphia, pp 2346–2575Google Scholar
  55. Mora MV, Iban MAR, Heredia JD et al (2015) Stem cell therapy in the management of shoulder rotator cuff disorders. World J Stem Cells 7:691–699CrossRefPubMedCentralGoogle Scholar
  56. Moreau JE, Bramono DS, Horan RL et al (2008) Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Eng A 14:1161–1172CrossRefGoogle Scholar
  57. Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346CrossRefPubMedGoogle Scholar
  58. Parchi PD, Vittorio O, Andreani L et al (2016) Nanoparticles for tendon healing and regeneration: literature review. Front Aging Neurosci 8Google Scholar
  59. Paxton JZ, Donnelly K, Keatch RP et al (2008) Engineering the bone–ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng A 15:1201–1209CrossRefGoogle Scholar
  60. Petrigliano FA, Mcallister DR, Wu BM (2006) Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy 22:441–451CrossRefPubMedGoogle Scholar
  61. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  62. Raffa V, Gherardini L, Vittorio O et al (2011) Carbon nanotube-mediated wireless cell permeabilization: drug and gene uptake. Nanomedicine 6:1709–1718CrossRefPubMedGoogle Scholar
  63. Rodeo SA, Potter HG, Kawamura S et al (2007) Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg Am 89:2485–2497PubMedGoogle Scholar
  64. Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999CrossRefGoogle Scholar
  65. Salgado AJ, Gimble JM (2013) Secretome of mesenchymal stem/stromal cells in regenerative medicine. Biochimie 95:2195CrossRefPubMedGoogle Scholar
  66. Salgado AJ, Sousa JC, Costa BM et al (2015) Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci 9:249CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sevivas N, Teixeira FG, Portugal R, Araujo L, Carrico LF, Ferreira N et al (2016) Mesenchymal stem cell secretome: A potential tool for the prevention of muscle degenerative changes associated with chronic rotator cuff tears. Am J Sports Med. doi: 10.1177/0363546516657827
  68. Sharma P, Maffulli N (2005) Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am 87:187–202PubMedGoogle Scholar
  69. Shearn JT, Juncosa-Melvin N, Boivin GP et al (2007) Mechanical stimulation of tendon tissue engineered constructs: effects on construct stiffness, repair biomechanics, and their correlation. J Biomech Eng 129:848–854CrossRefPubMedGoogle Scholar
  70. Shimode K, Iwasaki N, Majima T et al (2007) Bone marrow stromal cells act as feeder cells for tendon fibroblasts through soluble factors. Tissue Eng 13:333–341CrossRefPubMedGoogle Scholar
  71. Smith RK, Webbon PM (2005) Harnessing the stem cell for the treatment of tendon injuries: heralding a new dawn? Br J Sports Med 39:582–584CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sow WT, Lui YS, Ng KW (2013) Electrospun human keratin matrices as templates for tissue regeneration. Nanomedicine 8:531–541CrossRefPubMedGoogle Scholar
  73. Spalazzi JP, Dagher E, Doty SB et al (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86:1–12CrossRefPubMedGoogle Scholar
  74. Spindler KP, Kuhn JE, Freedman KB et al (2004) Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring does it really matter? A systematic review. Am J Sports Med 32:1986–1995CrossRefPubMedGoogle Scholar
  75. Teixeira FG, Carvalho MM, Sousa N et al (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70:3871–3882CrossRefPubMedGoogle Scholar
  76. Teixeira FG, Carvalho MM, Neves-Carvalho A et al (2015) Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev 11:288–297CrossRefPubMedGoogle Scholar
  77. Thorpe CT, Screen HR (2016) Tendon structure and composition. Adv Exp Med Biol 920:3–10CrossRefPubMedGoogle Scholar
  78. Torres DS, Freyman TM, Yannas IV et al (2000) Tendon cell contraction of collagen–GAG matrices in vitro: effect of cross-linking. Biomaterials 21:1607–1619CrossRefPubMedGoogle Scholar
  79. Van Eijk F, Saris DB, Creemers LB et al (2008) The effect of timing of mechanical stimulation on proliferation and differentiation of goat bone marrow stem cells cultured on braided PLGA scaffolds. Tissue Eng A 14:1425–1433CrossRefGoogle Scholar
  80. Vieira A, Guedes R, Marques A (2009) Development of ligament tissue biodegradable devices: a review. J Biomech 42:2421–2430CrossRefPubMedGoogle Scholar
  81. Vunjak-Novakovic G, Altman G, Horan R et al (2004) Tissue engineering of ligaments. Annu Rev Biomed Eng 6:131–156CrossRefPubMedGoogle Scholar
  82. Wang JH (2006) Mechanobiology of tendon. J Biomech 39:1563–1582CrossRefPubMedGoogle Scholar
  83. Wang B, Liu W, Zhang Y et al (2008) Engineering of extensor tendon complex by an ex vivo approach. Biomaterials 29:2954–2961CrossRefPubMedGoogle Scholar
  84. Webb K, Hitchcock RW, Smeal RM et al (2006) Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 39:1136–1144CrossRefPubMedGoogle Scholar
  85. Woo SL, Hildebrand K, Watanabe N et al (1999) Tissue engineering of ligament and tendon healing. Clin Orthop Relat Res 367:S312–S323CrossRefGoogle Scholar
  86. Woo SL-Y, Abramowitch SD, Kilger R et al (2006) Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 39:1–20CrossRefPubMedGoogle Scholar
  87. Yagi H, Soto-Gutierrez A, Parekkadan B et al (2010) Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant 19:667–679CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yang G, Rothrauff BB, Tuan RS (2013a) Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today 99:203–222CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yang Y, Zhang J, Qian Y et al (2013b) Superparamagnetic iron oxide is suitable to label tendon stem cells and track them in vivo with MR imaging. Ann Biomed Eng 41:2109–2119CrossRefPubMedPubMedCentralGoogle Scholar
  90. Young RG, Butler DL, Weber W et al (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413CrossRefPubMedGoogle Scholar
  91. Zhou Y, Zhang L, Zhao W et al (2013) Nanoparticle-mediated delivery of TGF-β1 miRNA plasmid for preventing flexor tendon adhesion formation. Biomaterials 34:8269–8278CrossRefPubMedGoogle Scholar

Copyright information

© ISAKOS 2017

Authors and Affiliations

  • Nuno Sevivas
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  • Guilherme França
    • 3
  • Nuno Oliveira
    • 3
  • Hélder Pereira
    • 1
    • 2
    • 6
    • 7
  • K. W. Ng
    • 8
  • António Salgado
    • 1
    • 2
  • João Espregueira-Mendes
    • 1
    • 2
    • 5
    • 6
  1. 1.Life and Health Sciences Research Institute (ICVS), School of MedicneUniversity of Minho4710-057 BragaPortugal
  2. 2.ICVS/3B’s - PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.Orthopaedics Department, Hospital de BragaBragaPortugal
  4. 4.Orthopaedics Department, Hospital Privado de BragaBragaPortugal
  5. 5.Clínica Espregueira-Mendes, FIFA Medical Centre of Excellence, Estádio do DragãoPortoPortugal
  6. 6.3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer EngineeringUniversity of MinhoGuimarãesPortugal
  7. 7.Orthopaedics Department, Centro Hospitalar Póvoa de Varzim – Vila do CondePóvoa de VarzimPortugal
  8. 8.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations