Skip to main content

Current Concepts in Natural History of Meniscal Injury and Future Options in Meniscus Healing: Orthobiologics

  • Chapter
  • First Online:
  • 2040 Accesses

Abstract

The precise natural history of meniscal injuries is unknown as there are limited available longitudinal data. Nevertheless, several studies noted an increase in the severity of these lesions over time [1, 2]. It is also well known that natural meniscal healing is limited, and tears do not seem to have the capacity to regenerate which is partly due to the absence of vascularization in the inner part of the meniscal body [3]. Furthermore, it has been documented that meniscal tissue should be preserved whenever possible as its loss results in higher peak stress on the articular cartilage and eventually leads to cartilage degeneration and osteoarthritis [4]. This cartilage degeneration is also directly proportional to the amount and the location of the meniscal tissue removed [5]. As the senior author Pr. R. Verdonk mentioned in previous publications that nothing has changed so much in knee treatment and surgery as the meniscal treatment algorithms which have shifted from simple resection to preservation of as much meniscal tissue possible [6]. Nowadays, the need for meniscal repair and regeneration is a fact and has first place among treatment options. Thus, various strategies have been proposed to enhance meniscus healing; in addition to recent significant improvement in regenerative medicine, new biological methodologies can be added to achieve this goal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kumm J, Roemer FW, Guermazi A, Turkiewicz A, Englund M. Natural history of intrameniscal signal intensity on knee MR images: six years of data from the osteoarthritis initiative. Radiology. 2016;278(1):164–71.

    Article  PubMed  Google Scholar 

  2. Keene GC, Bickerstaff D, Rae PJ, Paterson RS. The natural history of meniscal tears in anterior cruciate ligament insufficiency. Am J Sports Med. 1993;21(5):672–9.

    Article  CAS  PubMed  Google Scholar 

  3. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–5.

    Article  CAS  PubMed  Google Scholar 

  4. Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg Br. 1948;30B(4):664–70.

    CAS  PubMed  Google Scholar 

  5. Cicuttini FM, Forbes A, Yuanyuan W, Rush G, Stuckey SL. Rate of knee cartilage loss after partial meniscectomy. J Rheumatol. 2002;29(9):1954–6.

    PubMed  Google Scholar 

  6. Verdonk R. The meniscus: past, present and future. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):145–6.

    Article  PubMed  Google Scholar 

  7. Greis PE, Bardana DD, Holmstrom MC, Burks RT. Meniscal injury: I. Basic science and evaluation. J Am Acad Orthop Surg. 2002;10(3):168–76.

    Google Scholar 

  8. Masouros SD, McDermott ID, Amis AA, Bull AM. Biomechanics of the meniscus-meniscal ligament construct of the knee. Knee Surg Sports Traumatol Arthrosc. 2008;16(12):1121–32.

    Article  CAS  PubMed  Google Scholar 

  9. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am. 1983;65(4):538–47.

    Article  CAS  PubMed  Google Scholar 

  10. Gupte CM, Bull AM, Thomas RD, Amis AA. The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee. J Bone Joint Surg Br. 2003;85(5):765–73.

    PubMed  Google Scholar 

  11. Kusayama T, Harner CD, Carlin GJ, Xerogeanes JW, Smith BA. Anatomical and biomechanical characteristics of human meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc. 1994;2(4):234–7.

    Article  CAS  PubMed  Google Scholar 

  12. Zivanovic S. Menisco-meniscal ligaments of the human knee joint. Anat Anz. 1974;135(1–2):35–42.

    CAS  PubMed  Google Scholar 

  13. Brindle T, Nyland J, Johnson DL. The meniscus: review of basic principles with application to surgery and rehabilitation. J Athl Train. 2001;36(2):160–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis. 1984;43(4):635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ingman AM, Ghosh P, Taylor TK. Variation of collagenous and non-collagenous proteins of human knee joint menisci with age and degeneration. Gerontologia. 1974;20(4):212–23.

    Article  CAS  PubMed  Google Scholar 

  16. Bullough PG, Munuera L, Murphy J, Weinstein AM. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br. 1970;52(3):564–7.

    CAS  PubMed  Google Scholar 

  17. Smillie IS. The current pattern of the pathology of meniscus tears. Proc R Soc Med. 1968;61(1):44–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghadially FN, Lalonde JM, Wedge JH. Ultrastructure of normal and torn menisci of the human knee joint. J Anat. 1983;136(Pt 4):773–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Petersen W, Tillmann B. Age-related blood and lymph supply of the knee menisci. A cadaver study. Acta Orthop Scand. 1995;66(4):308–12.

    Article  CAS  PubMed  Google Scholar 

  20. Day B, Mackenzie WG, Shim SS, Leung G. The vascular and nerve supply of the human meniscus. Arthroscopy. 1985;1(1):58–62.

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10(6):329–35.

    Article  CAS  PubMed  Google Scholar 

  22. Assimakopoulos AP, Katonis PG, Agapitos MV, Exarchou EI. The innervation of the human meniscus. Clin Orthop Relat Res. 1992;275:232–6.

    Google Scholar 

  23. Fukuda Y, Takai S, Yoshino N, Murase K, Tsutsumi S, Ikeuchi K, et al. Impact load transmission of the knee joint-influence of leg alignment and the role of meniscus and articular cartilage. Clin Biomech (Bristol, Avon). 2000;15(7):516–21.

    Article  CAS  Google Scholar 

  24. Jones RE, Smith EC, Reisch JS. Effects of medial meniscectomy in patients older than forty years. J Bone Joint Surg Am. 1978;60(6):783–6.

    Article  CAS  PubMed  Google Scholar 

  25. Voloshin AS, Wosk J. Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng. 1983;5(2):157–61.

    Google Scholar 

  26. Kurosawa H, Fukubayashi T, Nakajima H. Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res. 1980;149:283–90.

    Google Scholar 

  27. Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res. 1990;252:19–31.

    Google Scholar 

  28. Markolf KL, Mensch JS, Amstutz HC. Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am. 1976;58(5):583–94.

    Google Scholar 

  29. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res. 2000;18(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  30. Shoemaker SC, Markolf KL. The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Joint Surg Am. 1986;68(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  31. Mac CM. The movements of bones and joints; the synovial fluid and its assistants. J Bone Joint Surg Br. 1950;32-B(2):244–52.

    Google Scholar 

  32. Arnoczky SP, Warren RF, Spivak JM. Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg Am. 1988;70(8):1209–17.

    Article  CAS  PubMed  Google Scholar 

  33. Karahan M, Kocaoglu B, Cabukoglu C, Akgun U, Nuran R. Effect of partial medial meniscectomy on the proprioceptive function of the knee. Arch Orthop Trauma Surg. 2010;130(3):427–31.

    Article  PubMed  Google Scholar 

  34. Al-Dadah O, Shepstone L, Donell ST. Proprioception following partial meniscectomy in stable knees. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):207–13.

    Article  CAS  PubMed  Google Scholar 

  35. Malliou P, Gioftsidou A, Pafis G, Rokka S, Kofotolis N, Mavromoustakos S, et al. Proprioception and functional deficits of partial meniscectomized knees. Eur J Phys Rehabil Med. 2012;48(2):231–6.

    CAS  PubMed  Google Scholar 

  36. Beattie KA, Boulos P, Pui M, O'Neill J, Inglis D, Webber CE, et al. Abnormalities identified in the knees of asymptomatic volunteers using peripheral magnetic resonance imaging. Osteoarthr Cartil. 2005;13(3):181–6.

    Article  CAS  PubMed  Google Scholar 

  37. Englund M, Guermazi A, Gale D, Hunter DJ, Aliabadi P, Clancy M, et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med. 2008;359(11):1108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guermazi A, Niu J, Hayashi D, Roemer FW, Englund M, Neogi T, et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham osteoarthritis study). BMJ. 2012;345:e5339.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Englund M, Guermazi A, Lohmander SL. The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin N Am. 2009;47(4):703–12.

    Article  PubMed  Google Scholar 

  40. Khan HI, Aitken D, Ding C, Blizzard L, Pelletier JP, Martel-Pelletier J, et al. Natural history and clinical significance of meniscal tears over 8 years in a midlife cohort. BMC Musculoskelet Disord. 2016;17:4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Poehling GG, Ruch DS, Chabon SJ. The landscape of meniscal injuries. Clin Sports Med. 1990;9(3):539–49.

    CAS  PubMed  Google Scholar 

  42. Englund M, Niu J, Guermazi A, Roemer FW, Hunter DJ, Lynch JA, et al. Effect of meniscal damage on the development of frequent knee pain, aching, or stiffness. Arthritis Rheum. 2007;56(12):4048–54.

    Article  CAS  PubMed  Google Scholar 

  43. Jakobson BW. Meniscal injuries. In: Van Dijk NC, editor. ISAKOS/ESSKA standard terminology, definitions, classification and scoring systems for arthroscopy: knee, shoulder and ankle joint; http://wwwesskaorg/upload/PDF/Standard_Terminologypdf2007

    Google Scholar 

  44. Smigielski R, Becker R, Zdanowicz U, Ciszek B. Medial meniscus anatomy-from basic science to treatment. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):8–14.

    Article  PubMed  Google Scholar 

  45. Anderson AF, Irrgang JJ, Dunn W, Beaufils P, Cohen M, Cole BJ, et al. Interobserver reliability of the International Society of Arthroscopy, knee surgery and orthopaedic sports medicine (ISAKOS) classification of meniscal tears. Am J Sports Med. 2011;39(5):926–32.

    Article  PubMed  Google Scholar 

  46. Dunn WR, Wolf BR, Amendola A, Andrish JT, Kaeding C, Marx RG, et al. Multirater agreement of arthroscopic meniscal lesions. Am J Sports Med. 2004;32(8):1937–40.

    Article  PubMed  Google Scholar 

  47. Cooper DE, Arnoczky SP, Warren RF. Meniscal repair. Clin Sports Med. 1991;10(3):529–48.

    CAS  PubMed  Google Scholar 

  48. Watanabe M. Arthroscopy of the knee joint. In: Helfet AJ, editor. Disorders of the knee. New York: Lippincott; 1974. p. 139–49.

    Google Scholar 

  49. Ahn JH, Lee SH, Yoo JC, Lee YS, Ha HC. Arthroscopic partial meniscectomy with repair of the peripheral tear for symptomatic discoid lateral meniscus in children: results of minimum 2 years of follow-up. Arthroscopy. 2008;24(8):888–98.

    Article  PubMed  Google Scholar 

  50. Ahn JH, Lee YS, Ha HC, Shim JS, Lim KS. A novel magnetic resonance imaging classification of discoid lateral meniscus based on peripheral attachment. Am J Sports Med. 2009;37(8):1564–9.

    Article  PubMed  Google Scholar 

  51. Pernin J, Verdonk P, Si Selmi TA, Massin P, Neyret P. Long-term follow-up of 24.5 years after intra-articular anterior cruciate ligament reconstruction with lateral extra-articular augmentation. Am J Sports Med. 2010;38(6):1094–102.

    Article  PubMed  Google Scholar 

  52. Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology. 2006;239(3):811–7.

    Article  PubMed  Google Scholar 

  53. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226(2):373–81.

    Article  PubMed  Google Scholar 

  54. Bhattacharyya T, Gale D, Dewire P, Totterman S, Gale ME, McLaughlin S, et al. The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee. J Bone Joint Surg Am. 2003;85-A(1):4–9.

    Article  PubMed  Google Scholar 

  55. Sowers M, Karvonen-Gutierrez CA, Jacobson JA, Jiang Y, Yosef M. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J Bone Joint Surg Am. 2011;93(3):241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  56. ESSKA Meniscus Consensus Project: Degeneratif Meniscus Lesions. Chairmen: Beaufils P, Becker R Copyright ©2016 ESSKA

    Google Scholar 

  57. Herrlin SV, Wange PO, Lapidus G, Hallander M, Werner S, Weidenhielm L. Is arthroscopic surgery beneficial in treating non-traumatic, degenerative medial meniscal tears? A five year follow-up. Knee Surg Sports Traumatol Arthrosc. 2013;21(2):358–64.

    Article  PubMed  Google Scholar 

  58. Katz JN, Brophy RH, Chaisson CE, de Chaves L, Cole BJ, Dahm DL, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med. 2013;368(18):1675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Osteras H, Osteras B, Torstensen TA. Medical exercise therapy is effective after arthroscopic surgery of degenerative meniscus of the knee: a randomized controlled trial. J Clin Med Res. 2012;4(6):378–84.

    PubMed  PubMed Central  Google Scholar 

  60. Gauffin H, Tagesson S, Meunier A, Magnusson H, Kvist J. Knee arthroscopic surgery is beneficial to middle-aged patients with meniscal symptoms: a prospective, randomised, single-blinded study. Osteoarthr Cartil. 2014;22(11):1808–16.

    Article  CAS  PubMed  Google Scholar 

  61. Verdonk R, Almqvist F. Lésions traumatiques des ménisques du genou. EMC-Appareil Locomoteur [Article 14-084-A-10]. Paris Elsevier; 2005.

    Google Scholar 

  62. Nepple JJ, Dunn WR, Wright RW. Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. J Bone Joint Surg Am. 2012;94(24):2222–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Smith NA, MacKay N, Costa M, Spalding T. Meniscal allograft transplantation in a symptomatic meniscal deficient knee: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):270–9.

    Article  PubMed  Google Scholar 

  64. Verdonk R, Volpi P, Verdonk P, Van der Bracht H, Van Laer M, Almqvist KF, et al. Indications and limits of meniscal allografts. Injury. 2013;44(Suppl 1):S21–7.

    Article  PubMed  Google Scholar 

  65. Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W, et al. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med. 2012;40(4):844–53.

    Article  PubMed  Google Scholar 

  66. Kon E, Filardo G, Zaffagnini S, Di Martino A, Di Matteo B, Marcheggiani Muccioli GM, et al. Biodegradable polyurethane meniscal scaffold for isolated partial lesions or as combined procedure for knees with multiple comorbidities: clinical results at 2 years. Knee Surg Sports Traumatol Arthrosc. 2014;22(1):128–34.

    Article  PubMed  Google Scholar 

  67. Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G, et al. Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am J Sports Med. 2011;39(5):977–85.

    Article  PubMed  Google Scholar 

  68. Verdonk R, Madry H, Shabshin N, Dirisamer F, Peretti GM, Pujol N, et al. The role of meniscal tissue in joint protection in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016;24(6):1763–74.

    Article  PubMed  Google Scholar 

  69. Toolan BC. Current concepts review: orthobiologics. Foot Ankle Int. 2006;27(7):561–6.

    Article  PubMed  Google Scholar 

  70. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br. 2009;91(8):987–96.

    Article  CAS  PubMed  Google Scholar 

  71. Andia I, Maffulli N. Muscle and tendon injuries: the role of biological interventions to promote and assist healing and recovery. Arthroscopy. 2015;31(5):999–1015.

    Article  PubMed  Google Scholar 

  72. Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469(10):2706–15.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Delos D, Rodeo SA. Enhancing meniscal repair through biology: platelet-rich plasma as an alternative strategy. Instr Course Lect. 2011;60:453–60.

    PubMed  Google Scholar 

  74. Forriol F. Growth factors in cartilage and meniscus repair. Injury. 2009;40(Suppl 3):S12–6.

    Article  PubMed  Google Scholar 

  75. Sheth U, Simunovic N, Klein G, Fu F, Einhorn TA, Schemitsch E, et al. Efficacy of autologous platelet-rich plasma use for orthopaedic indications: a meta-analysis. J Bone Joint Surg Am. 2012;94(4):298–307.

    Article  PubMed  Google Scholar 

  76. Kon E, Filardo G, Di Martino A, Marcacci M. Platelet-rich plasma (PRP) to treat sports injuries: evidence to support its use. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):516–27.

    Article  PubMed  Google Scholar 

  77. Griffin JW, Hadeed MM, Werner BC, Diduch DR, Carson EW, Miller MD. Platelet-rich plasma in meniscal repair: does augmentation improve surgical outcomes? Clin Orthop Relat Res. 2015;473(5):1665–72.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pujol N, Salle de Chou E, Boisrenoult P, Beaufils P. Platelet-rich plasma for open meniscal repair in young patients: any benefit? Knee Surg Sports Traumatol Arthrosc. 2015;23(1):51–8.

    Article  PubMed  Google Scholar 

  79. Verdonk PC, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthr Cartil. 2005;13(7):548–60.

    Article  CAS  PubMed  Google Scholar 

  80. Verdonk P. The human meniscus: transplantation, characterisation and tissue engineering. Doctoral thesis, UGent, Belgium. 2006.

    Google Scholar 

  81. Zellner J, Mueller M, Berner A, Dienstknecht T, Kujat R, Nerlich M, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A. 2010;94(4):1150–61.

    PubMed  Google Scholar 

  82. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  83. Matsukura Y, Muneta T, Tsuji K, Koga H, Sekiya I. Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clin Orthop Relat Res. 2014;472(5):1357–64.

    Article  PubMed  Google Scholar 

  84. Horie M, Driscoll MD, Sampson HW, Sekiya I, Caroom CT, Prockop DJ, et al. Implantation of allogenic synovial stem cells promotes meniscal regeneration in a rabbit meniscal defect model. J Bone Joint Surg Am. 2012;94(8):701–12.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Desando G, Cavallo C, Sartoni F, Martini L, Parrilli A, Veronesi F, et al. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther. 2013;15(1):R22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–53.

    PubMed  Google Scholar 

  87. Pak J, Lee JH, Lee SH. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells. Biomed Res Int. 2014;2014:436029.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vangsness Jr CT, Farr 2nd J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014;96(2):90–8.

    Article  PubMed  Google Scholar 

  89. Andia I, Maffulli N. Biological therapies in regenerative sports medicine. Sports Med. 2016.

    Google Scholar 

  90. Henning CE, Lynch MA, Yearout KM, Vequist SW, Stallbaumer RJ, Decker KA. Arthroscopic meniscal repair using an exogenous fibrin clot. Clin Orthop Relat Res. 1990;252:64–72.

    Google Scholar 

  91. van Trommel MF, Simonian PT, Potter HG, Wickiewicz TL. Arthroscopic meniscal repair with fibrin clot of complete radial tears of the lateral meniscus in the avascular zone. Arthroscopy. 1998;14(4):360–5.

    Article  PubMed  Google Scholar 

  92. Ra HJ, Ha JK, Jang SH, Lee DW, Kim JG. Arthroscopic inside-out repair of complete radial tears of the meniscus with a fibrin clot. Knee Surg Sports Traumatol Arthrosc. 2013;21(9):2126–30.

    Article  PubMed  Google Scholar 

  93. Kamimura T, Kimura M. Meniscal repair of degenerative horizontal cleavage tears using fibrin clots: clinical and arthroscopic outcomes in 10 cases. Orthop J Sports Med. 2014;2(11):2325967114555678.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Evans CH, Robbins PD. Genetically augmented tissue engineering of the musculoskeletal system. Clin Orthop Relat Res. 1999;367 Suppl:S410–8.

    Article  Google Scholar 

  95. Hidaka C, Ibarra C, Hannafin JA, Torzilli PA, Quitoriano M, Jen SS, et al. Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Eng. 2002;8(1):93–105.

    Article  CAS  PubMed  Google Scholar 

  96. Madry H, Cucchiarini M, Kaul G, Kohn D, Terwilliger EF, Trippel SB. Menisci are efficiently transduced by recombinant adeno-associated virus vectors in vitro and in vivo. Am J Sports Med. 2004;32(8):1860–5.

    Google Scholar 

  97. Lee HP, Kaul G, Cucchiarini M, Madry H. Nonviral gene transfer to human meniscal cells. Part I: transfection analyses and cell transplantation to meniscus explants. Int Orthop. 2014;38(9):1923–30.

    Article  PubMed  Google Scholar 

  98. Cucchiarini M, Schetting S, Terwilliger EF, Kohn D, Madry H. rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and alpha-SMA expression in human meniscal lesions. Gene Ther. 2009;16(11):1363–72.

    Article  CAS  PubMed  Google Scholar 

  99. Huang G, Zheng Q, Sun J, Guo C, Yang J, Chen R, et al. Stabilization of cellular properties and differentiation multipotential of human mesenchymal stem cells transduced with hTERT gene in a long-term culture. J Cell Biochem. 2008;103(4):1256–69.

    Article  CAS  PubMed  Google Scholar 

  100. Goto H, Shuler FD, Niyibizi C, Fu FH, Robbins PD, Evans CH. Gene therapy for meniscal injury: enhanced synthesis of proteoglycan and collagen by meniscal cells transduced with a TGFbeta(1)gene. Osteoarthr Cartil. 2000;8(4):266–71.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang H, Leng P, Zhang J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin Orthop Relat Res. 2009;467(12):3165–74.

    Google Scholar 

  102. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  103. Moran CJ, Busilacchi A, Lee CA, Athanasiou KA, Verdonk PC. Biological augmentation and tissue engineering approaches in meniscus surgery. Arthroscopy. 2015;31(5):944–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Verdonk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Kyriakidis, T., Verdonk, R., Verdonk, P. (2017). Current Concepts in Natural History of Meniscal Injury and Future Options in Meniscus Healing: Orthobiologics. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics