Skip to main content

Shoulder Muscle Architecture, Physiology, and Plasticity

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Muscles generate movement of the shoulder complex (glenohumeral, scapulothoracic, and acromioclavicular joints) and provide the stability needed to protect vital anatomic structures, in coordination with the rest of the neuromusculoskeletal system (i.e., tendons, ligaments, and the nervous system). One subset of muscles, the rotator cuff (supraspinatus, infraspinatus, subscapularis, and teres minor), is assembled in a way that optimizes them for generating dynamic stability—in this case of the glenohumeral joint. Of course, injury and degeneration are common in the tendons of the rotator cuff, which cause pain, instability, and impaired upper extremity function. Although the tendons of the rotator cuff, and their associated bony footprint, have been the focus of a tremendous amount of research related to pathophysiology and surgical reconstruction techniques, more recent data suggests that atrophic changes in these muscles complicate reconstruction and impair function and are persistent even after successful tendon reconstruction. And beyond tendinopathy and frank tendon tears, rotator cuff dysfunction has also been implicated in a variety of pathologic conditions, such as glenohumeral instability, internal derangement, and non-cuff tendinopathy. However, the mechanisms (neural or otherwise) that relate muscle function (or dysfunction) to pathologic processes are unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill AV. The mechanics of active muscle. Proc R Soc Lond B Biol Sci. 1953;141:104.

    Article  CAS  PubMed  Google Scholar 

  2. Hill AV. The effect of load on the heat of shortening of muscle. Proc R Soc Lond B Biol Sci. 1964;159:297.

    Article  CAS  PubMed  Google Scholar 

  3. Goldman YE. Kinetics of the actomyosin ATPase in muscle fibers. Annu Rev Physiol. 1987;49:637.

    Article  CAS  PubMed  Google Scholar 

  4. Schiaffino S, Reggiani C. Fiber Types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–531.

    Article  CAS  PubMed  Google Scholar 

  5. Warren GW, Hayes D, Lowe DA, Armstrong RB. Mechanical factors in the initiation of eccentric contraction-induced injury in rat soleus muscle. J Physiol. 1993;464:457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Talmadge RJ, Roy RR. Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol. 1993;75:2337.

    CAS  PubMed  Google Scholar 

  7. Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Phys. 1994;267:C1723–C8.

    CAS  Google Scholar 

  8. Lovering RM, Russ DW. Fiber type composition of cadaveric human rotator cuff muscles. J Orthop Sports Phys Ther. 2008;38(11):674–80.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tirrell TF, Cook MS, Carr JA, Lin E, Ward SR, Lieber RL. Human skeletal muscle biochemical diversity. J Exp Biol. 2012;215(Pt 15):2551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sato EJ, Killian ML, Choi AJ, Lin E, Esparza MC, Galatz LM, et al. Skeletal muscle fibrosis and stiffness increase after rotator cuff tendon injury and neuromuscular compromise in a rat model. J Orthop Res. 2014;32(9):1111–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Clarkson PM, Johnson J, Dextradeur D, Leszczynski W, Wai J, Melchionda A. The relationships among isokinetic endurance, initial strength level, and fiber type. Res Q Excerc Sport. 1982;53:15.

    Article  CAS  Google Scholar 

  12. Evans WJ, Meredith CN, Cannon JG, Dinarello CA, Frontera WR, Hughes VA, et al. Metabolic changes following eccentric exercise in trained and untrained men. J Appl Physiol. 1986;61:1864.

    CAS  PubMed  Google Scholar 

  13. Lieber RL, Fridén J. Early mechanical events leading to muscle injury. Curr Opin Orthop. 1993;4:80.

    Article  Google Scholar 

  14. Friden J, Lieber RL, Thornell LE. Subtle indications of muscle damage following eccentric contractions. Acta Physiol Scand. 1991;142:523.

    Article  CAS  PubMed  Google Scholar 

  15. Friden J, Lieber RL. Structural basis of muscle cellular damage. Basic Appl Myol. 1994;4:35.

    Google Scholar 

  16. Lieber RL, Thornell LE, Fridén J. Muscle cytoskeletal disruption occurs within the first 15 minutes of cyclic eccentric contraction. J Appl Physiol. 1996;80:278.

    Article  CAS  PubMed  Google Scholar 

  17. Friden J. Changes in human skeletal muscle induced by long term eccentric exercise. Cell Tissue Res. 1984;236:365.

    Article  CAS  PubMed  Google Scholar 

  18. Friden J, Seger J, Sjostrom M, Ekblom B. Adaptive response in human skeletal muscle subjected to prolonged eccentric training. Int J Sports Med. 1983;4(3):177–83.

    Article  CAS  PubMed  Google Scholar 

  19. Lieber RL, Fridén J. Selective damage of fast glycolytic muscle fibers with eccentric contraction of the rabbit tibialis anterior. Acta Physiol Scand. 1988;133:587.

    Article  CAS  PubMed  Google Scholar 

  20. Burke RE, Levine DN, Tsairis P, Zajac FE. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol. 1973;234:723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gans C. Fiber architecture and muscle function. Exerc Sport Sci Rev. 1982;10:160–207.

    Article  CAS  PubMed  Google Scholar 

  22. Lieber RL, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23:1647–66.

    Article  CAS  PubMed  Google Scholar 

  23. Gans C, Bock WJ. The functional significance of muscle architecture: a theoretical analysis. Adv Anat Embryol Cell Biol. 1965;38:115.

    CAS  Google Scholar 

  24. Gans C, De Vries F. Functional bases of fiber length and angulation in muscle. J Morphol. 1987;192:63.

    Article  CAS  PubMed  Google Scholar 

  25. Jacobson MD, Raab R, Fazeli BM, Abrams RA, Botte MJ, Lieber RL. Architectural design of the human intrinsic hand muscles. J Hand SurgAm. 1992;17A(804):804.

    Article  Google Scholar 

  26. Bodine SC, Roy RR, Meadows DA, Zernicke RF, Sacks RD, Fournier M, et al. Architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. J Neurophysiol. 1982;48:192–201.

    CAS  PubMed  Google Scholar 

  27. Ounjian M, Roy RR, Eldred E, Garfinkel A, Payne JR, Armstrong A, et al. Physiological and developmental implications of motor unit anatomy. J Neurobiol. 1991;22:547.

    Article  CAS  PubMed  Google Scholar 

  28. Loeb GE, Pratt CA, Chanaud CM, Richmond FJR. Distribution and innervation of short, interdigitated muscle fibers in parallel-fibered muscles of the cat hindlimb. J Morphol. 1987;191:1.

    Article  CAS  PubMed  Google Scholar 

  29. Lieber RL, Loren GJ, Friden J. In vivo measurement of human wrist extensor muscle sarcomere length changes. J Neurophysiol. 1994;71:874.

    CAS  PubMed  Google Scholar 

  30. Llewellyn ME, Barretto RP, Delp SL, Schnitzer MJ. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature. 2008;454(7205):784–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cromie MJ, Sanchez GN, Schnitzer MJ, Delp SL. Sarcomere lengths in human extensor carpi radialis brevis measured by microendoscopy. Muscle Nerve. 2013;48(2):286–92.

    Article  PubMed  Google Scholar 

  32. Burkholder TJ, Lieber RL. Sarcomere length operating range of muscles during movement. J Exp Biol. 2001;204:1529.

    CAS  PubMed  Google Scholar 

  33. Lieber RL, Fridén J. Intraoperative measurement and biomechanical modeling of the flexor carpi ulnaris-to-extensor carpi radialis longus tendon transfer. J Biomech Eng. 1997;119:386.

    Article  CAS  PubMed  Google Scholar 

  34. Rome LC. Scaling of muscle fibres and locomotion. J Exp Biol. 1992;168:243.

    CAS  PubMed  Google Scholar 

  35. Rome LC, Sosnicki AA. Myofilament overlap in swimming carp II. Sarcomere length changes during swimming. Am J Phys. 1991;163:281.

    Google Scholar 

  36. Gates JJ, Gilliland J, McGarry MH, Park MC, Acevedo D, Fitzpatrick MJ, et al. Influence of distinct anatomic subregions of the supraspinatus on humeral rotation. J Orthop Res. 2010 Jan;28(1):12–7.

    PubMed  Google Scholar 

  37. Ward SR, Hentzen ER, Smallwood LH, Eastlack RK, Burns KA, Fithian DC, et al. Rotator cuff muscle architecture: implications for glenohumeral stability. Clin Orthop Relat Res. 2006;448:157–63.

    Article  PubMed  Google Scholar 

  38. Boakes JL, Foran J, Ward SR, Lieber RL. Muscle adaptation by serial sarcomere addition 1 year after femoral lengthening. Clin Orthop. 2007;456:250–3.

    Article  PubMed  Google Scholar 

  39. Williams P, Goldspink G. Changes in sarcomere length and physiological properties in immobilized muscle. J Anat. 1978;127:459.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop. 1994;304(304):78–83.

    Google Scholar 

  41. Goutallier D, Postel JM, Gleyze P, Leguilloux P, Van Driessche S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elb Surg. 2003;12(6):550–4.

    Article  Google Scholar 

  42. Hersche O, Gerber C. Passive tension in the supraspinatus musculotendinous unit after long-standing rupture of its tendon: a preliminary report. J Shoulder Elb Surg. 1998;7(4):393–6.

    Article  CAS  Google Scholar 

  43. Petersen SA, Murphy TP. The timing of rotator cuff repair for the restoration of function. J Shoulder Elb Surg. 2011;20(1):62–8.

    Article  Google Scholar 

  44. Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am. 2000;82(4):505–15.

    Article  CAS  PubMed  Google Scholar 

  45. Gerber C, Meyer DC, Schneeberger AG, Hoppeler H, von Rechenberg B. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep. J Bone Joint Surg Am. 2004;86-A(9):1973–82.

    Article  CAS  PubMed  Google Scholar 

  46. Gibbons MC, Sato EJ, Bachasson D, Cheng T, Azimi H, Schenk S, et al. Muscle architectural changes after massive human rotator cuff tear. J Orthop Res. 2016;34(12):2089–95.

    Article  CAS  PubMed  Google Scholar 

  47. Shi LL, Boykin RE, Lin A, Warner JJ. Association of suprascapular neuropathy with rotator cuff tendon tears and fatty degeneration. J Shoulder Elb Surg. 2014;23(3):339–46.

    Article  Google Scholar 

  48. Warner JP, Krushell RJ, Masquelet A, Gerber C. Anatomy and relationships of the suprascapular nerve: anatomical constraints to mobilization of the supraspinatus and infraspinatus muscles in the management of massive rotator-cuff tears. J Bone Joint Surg Am. 1992;74:36.

    Article  CAS  PubMed  Google Scholar 

  49. Boykin RE, Friedman DJ, Zimmer ZR, Oaklander AL, Higgins LD, Warner JJ. Suprascapular neuropathy in a shoulder referral practice. J Shoulder Elb Surg. 2011;20(6):983–8.

    Article  Google Scholar 

  50. Das R, Rich J, Kim HM, McAlinden A, Thomopoulos S. Effects of Botulinum toxin-induced paralysis on postnatal development of the supraspinatus muscle. J Orthop Res. 2011;29(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  51. Liu X, Manzano G, Kim HT, Feeley BT. A rat model of massive rotator cuff tears. J Orthop Res. 2011;29(4):588–95.

    Article  PubMed  Google Scholar 

  52. Liu X, Joshi SK, Samagh SP, Dang YX, Laron D, Lovett DH, et al. Evaluation of Akt/mTOR activity in muscle atrophy after rotator cuff tears in a rat model. J Orthop Res. 2012;30(9):1440–6.

    Article  CAS  PubMed  Google Scholar 

  53. Liu X, Laron D, Natsuhara K, Manzano G, Kim HT, Feeley BT. A mouse model of massive rotator cuff tears. J Bone Joint Surg Am. 2012;94(7):e41.

    Article  PubMed  Google Scholar 

  54. Samagh SP, Kramer EJ, Melkus G, Laron D, Bodendorfer BM, Natsuhara K, et al. MRI quantification of fatty infiltration and muscle atrophy in a mouse model of rotator cuff tears. J Orthop Res. 2013;31(3):421–6.

    Article  PubMed  Google Scholar 

  55. Collin P, Treseder T, Ladermann A, Benkalfate T, Mourtada R, Courage O, et al. Neuropathy of the suprascapular nerve and massive rotator cuff tears: a prospective electromyographic study. J Shoulder Elb Surg. 2014;23(1):28–34.

    Article  Google Scholar 

  56. Beeler S, Ek ET, Gerber C. A comparative analysis of fatty infiltration and muscle atrophy in patients with chronic rotator cuff tears and suprascapular neuropathy. J Shoulder Elb Surg. 2013;22(11):1537–46.

    Article  Google Scholar 

  57. Barry JJ, Lansdown DA, Cheung S, Feeley BT, Ma CB. The relationship between tear severity, fatty infiltration, and muscle atrophy in the supraspinatus. J Shoulder Elb Surg. 2013;22(1):18–25.

    Article  Google Scholar 

  58. Santago 2nd AC, Vidt ME, Tuohy CJ, Poehling GG, Freehill MT, Jordan JH, et al. Quantitative analysis of three-dimensional distribution and clustering of intramuscular fat in muscles of the rotator cuff. Ann Biomed Eng. 2016;44(7):2158–67.

    Article  PubMed  Google Scholar 

  59. Gibbons MC, Singh A, Anakwenze O, Cheng T, Pomerantz M, Schenk S, Engler AJ, Ward SR. Histological assessment of human muscle in advanced rotator cuff disease: evidence of degeneration, regeneration, and remodeling. J Bone Joint Surg. In Press.

    Google Scholar 

  60. Meyer GA, Farris AL, Sato E, Gibbons M, Lane JG, Ward SR, et al. Muscle progenitor cell regenerative capacity in the torn rotator cuff. J Orthop Res. 2015;33(3):421–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Lieber Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Ward, S.R., Lieber, R.L. (2017). Shoulder Muscle Architecture, Physiology, and Plasticity. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics