Skip to main content

Multilinear Games

  • 756 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10123)

Abstract

In many games, players’ decisions consist of multiple sub-decisions, and hence can give rise to an exponential number of pure strategies. However, this set of pure strategies is often structured, allowing it to be represented compactly, as in network congestion games, security games, and extensive form games. Reduction to the standard normal form generally introduces exponential blow-up in the strategy space and therefore are inefficient for computation purposes. Although individual classes of such games have been studied, there currently exists no general purpose algorithms for computing solutions. equilibrium.

To address this, we define multilinear games generalizing all. Informally, a game is multilinear if its utility functions are linear in each player’s strategy, while fixing other players’ strategies. Thus, if pure strategies, even if they are exponentially many, are vectors in polynomial dimension, then we show that mixed-strategies have an equivalent representation in terms of marginals forming a polytope in polynomial dimension.

The canonical representation for multilinear games can still be exponential in the number of players, a typical obstacle in multi-player games. Therefore, it is necessary to assume additional structure that allows computation of certain sub-problems in polynomial time. Towards this, we identify two key subproblems: computation of utility gradients, and optimizing linear functions over strategy polytope. Given a multilinear game, with polynomial time subroutines for these two tasks, we show the following: (a) We can construct a polynomially computable and continuous fixed-point formulation, and show that its approximate fixed-points are approximate NE. This gives containment of approximate NE computation in PPAD, and settles its complexity to PPAD-complete. (b) Even though a coarse correlated equilibrium can potentially have exponential representation , through LP duality and a carefully designed separation oracle, we provide a polynomial-time algorithm to compute one with polynomial representation. (c) We show existence of an approximate NE with support-size logarithmic in the strategy polytope dimensions.

Keywords

  • Nash Equilibrium
  • Mixed Strategy
  • Pure Strategy
  • Strategy Profile
  • Normal Form Game

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-54110-4_4
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-54110-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

References

  1. Ahmadinejad, A., Dehghani, S., Hajiaghayi, M., Lucier, B., Mahini, H., Seddighin, S.: From duels to battlefields: computing equilibria of blotto and other games. In: AAAI: Proceedings of the AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  2. Babichenko, Y., Barman, S., Peretz, R.: Empirical distribution of equilibrium play and its testing application. CoRR abs/1310.7654 (2013). http://arXiv.org/abs/1310.7654

  3. Budish, E., Che, Y.K., Kojima, F., Milgrom, P.: Designing random allocation mechanisms: theory and applications. Am. Econ. Rev. 103(2), 585–623 (2013)

    CrossRef  Google Scholar 

  4. Chan, H., Jiang, A.X.: Congestion games with polytopal strategy spaces. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI, pp. 165–171 (2016)

    Google Scholar 

  5. Chan, H., Jiang, A.X., Leyton-Brown, K., Mehta, R.: Multilinear games. Full Version (2016). http://www.cs.trinity.edu/xjiang/papers/multilinear.pdf

    Google Scholar 

  6. Chen, X., Deng, X., Teng, S.H.: Computing nash equilibria: approximation and smoothed complexity. In: Proceedings of the Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 603–612. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  7. Daskalakis, C., Fabrikant, A., Papadimitriou, C.H.: The game world is flat: the complexity of nash equilibria in succinct games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 513–524. Springer, Heidelberg (2006). doi:10.1007/11786986_45

    CrossRef  Google Scholar 

  8. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: Proceedings of the Annual ACM Symposium on Theory of Computing, STOC, pp. 71–78 (2006)

    Google Scholar 

  9. Etessami, K., Yannakakis, M.: On the complexity of nash equilibria and other fixed points (extended abstract). In: Proceedings of the Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 113–123 (2007)

    Google Scholar 

  10. Geanakoplos, J.: Nash and Walras equilibrium via Brouwer. Econ. Theory 21(2), 585–603 (2003)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. Immorlica, N., Kalai, A.T., Lucier, B., Moitra, A., Postlewaite, A., Tennenholtz, M.: Dueling algorithms. In: Proceedings of the Annual ACM Symposium on Theory of Computing, STOC (2011)

    Google Scholar 

  13. Jain, M., Korzhyk, D., Vanek, O., Conitzer, V., Pechoucek, M., Tambe, M.: A double oracle algorithm for zero-sum security games on graphs. In: AAMAS (2011)

    Google Scholar 

  14. Jiang, A.X., Leyton-Brown, K.: Polynomial computation of exact correlated equilibrium in compact games. In: Proceedings of the ACM Conference on Electronic Commerce, EC (2011)

    Google Scholar 

  15. Jiang, A.X., Leyton-Brown, K., Bhat, N.: Action-graph games. Games Econ. Behav. 71(1), 141–173 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Kearns, M., Littman, M., Singh, S.: Graphical models for game theory. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence, UAI, pp. 253–260 (2001)

    Google Scholar 

  17. Koller, D., Milch, B.: Multi-agent influence diagrams for representing and solving games. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI (2001)

    Google Scholar 

  18. Köppe, M., Ryan, C.T., Queyranne, M.: Rational generating functions and integer programming games. Oper. Res. 59(6), 1445–1460 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Korzhyk, D., Conitzer, V., Parr, R.: Complexity of computing optimal stackelberg strategies in security resource allocation games. In: AAAI (2010)

    Google Scholar 

  20. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 289–295 (1951)

    MathSciNet  CrossRef  MATH  Google Scholar 

  21. Papadimitriou, C., Roughgarden, T.: Computing correlated equilibria in multi-player games. J. ACM 55(3), 14 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  22. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)

    MathSciNet  CrossRef  MATH  Google Scholar 

  23. Rabinovich, Z., Gerding, E., Polukarov, M., Jennings, N.R.: Generalised fictitious play for a continuum of anonymous players. In: IJCAI: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 245–250 (2009)

    Google Scholar 

  24. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press, Cambridge (2011)

    CrossRef  MATH  Google Scholar 

  25. Vorobeychik, Y.: Mechanism design and analysis using simulation-based game models. Ph.D. thesis, University of Michigan (2008)

    Google Scholar 

  26. Yin, Z., Jiang, A.X., Johnson, M.P., Tambe, M., Kiekintveld, C., Leyton-Brown, K., Sandholm, T., Sullivan, J.: TRUSTS: Scheduling randomized patrols for fare inspection in transit systems. In: IAAI (2012)

    Google Scholar 

  27. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In: ICML (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Xin Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Chan, H., Jiang, A.X., Leyton-Brown, K., Mehta, R. (2016). Multilinear Games. In: Cai, Y., Vetta, A. (eds) Web and Internet Economics. WINE 2016. Lecture Notes in Computer Science(), vol 10123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54110-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54110-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54109-8

  • Online ISBN: 978-3-662-54110-4

  • eBook Packages: Computer ScienceComputer Science (R0)