Advertisement

Complex Contagions on Configuration Model Graphs with a Power-Law Degree Distribution

  • Grant Schoenebeck
  • Fang-Yi Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10123)

Abstract

In this paper we analyze k-complex contagions (sometimes called bootstrap percolation) on configuration model graphs with a power-law distribution. Our main result is that if the power-law exponent \(\alpha \in (2, 3)\), then with high probability, the single seed of the highest degree node will infect a constant fraction of the graph within time \(O\left( \log ^{\frac{\alpha -2}{3-\alpha }}(n)\right) \). This complements the prior work which shows that for \(\alpha > 3\) boot strap percolation does not spread to a constant fraction of the graph unless a constant fraction of nodes are initially infected. This also establishes a threshold at \(\alpha = 3\).

The case where \(\alpha \in (2, 3)\) is especially interesting because it captures the exponent parameters often observed in social networks (with approximate power-law degree distribution). Thus, such networks will spread complex contagions even lacking any other structures.

We additionally show that our theorem implies that \(\omega (\left( n^{\frac{\alpha -2}{\alpha -1}}\right) \) random seeds will infect a constant fraction of the graph within time \(O\left( \log ^{\frac{\alpha -2}{3-\alpha }}(n)\right) \) with high probability. This complements prior work which shows that \(o\left( n^{\frac{\alpha -2}{\alpha -1}}\right) \) random seeds will have no effect with high probability, and this also establishes a threshold at \(n^{\frac{\alpha -2}{\alpha -1}}\).

Keywords

Degree Distribution Configuration Model Preferential Attachment Random Seed Full Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adamic, L.A., Glance, N.: The political blogosphere, the: divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43. ACM (2005)Google Scholar
  2. 2.
    Adler, J.: Bootstrap percolation. Phys. A: Stat. Theor. Phys. 171(3), 453–470 (1991)CrossRefGoogle Scholar
  3. 3.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002). doi: 10.1103/RevModPhys.74.47. http://link.aps.org/doi/10.1103/RevModPhys.74.47 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Amini, H.: Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electron. J. Comb. 17(1), 1–20 (2010)MathSciNetMATHGoogle Scholar
  5. 5.
    Amini, H., Fountoulakis, N.: What I tell you three times is true: bootstrap percolation in small worlds. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 462–474. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35311-6_34 CrossRefGoogle Scholar
  6. 6.
    Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54 (2006)Google Scholar
  7. 7.
    Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30, 257–286 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science 341(6144), 1236498 (2013)CrossRefGoogle Scholar
  9. 9.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bollobás, B., McKay, B.D.: The number of matchings in random regular graphs and bipartite graphs. J. Comb. Theory, Series B 41(1), 80–91 (1986)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. In: Proceedings of the 9th International World Wide Web Conference on Computer Networks, pp. 309–320 (2000)Google Scholar
  12. 12.
    Centola, D., Macy, M.: Complex contagions and the weakness of long ties1. Am. J. Sociol. 113(3), 702–734 (2007)CrossRefGoogle Scholar
  13. 13.
    Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a bethe lattice. J. Phys. C: Solid State Phys. 12(1), L31 (1979)CrossRefGoogle Scholar
  14. 14.
    Coleman, J., Katz, E., Menzel, H.: The diffusion of an innovation among physicians. Sociometry 20(4), 253–270 (1957)CrossRefGoogle Scholar
  15. 15.
    Coleman, J.S., Katz, E., Menzel, H.: Medical Innovation: A Diffusion Study. Bobbs-Merrill Co., Indianapolis (1966)Google Scholar
  16. 16.
    Ebrahimi, R., Gao, J., Ghasemiesfeh, G., Schoenebeck, G.: How complex contagions spread quickly in the preferential attachment model, other time-evolving networks. arXiv preprint arXiv:1404.2668 (2014)
  17. 17.
    Ebrahimi, R., Gao, J., Ghasemiesfeh, G., Schoenebeck, G.: Complex contagions in Kleinberg’s small world model. In: Proceedings of the Conference on Innovations in Theoretical Computer Science, pp. 63–72. ACM (2015)Google Scholar
  18. 18.
    Ghasemiesfeh, G., Ebrahimi, R., Gao, J.: Complex contagion, the weakness of long ties in social networks: revisited. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, pp. 507–524, June 2013Google Scholar
  19. 19.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  20. 20.
    Janson, S., Łuczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random graph \(G_{n, p}\). Ann. Appl. Prob. 22(5), 1989–2047 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)Google Scholar
  22. 22.
    Macdonald, J.S., Macdonald, L.D.: Chain migration, ethnic neighborhood formation and social networks. Milbank Meml. Fund Q. 42(1), 82–97 (1964)CrossRefGoogle Scholar
  23. 23.
    Mermelstein, R., Cohen, S., Lichtenstein, E., Baer, J.S., Kamarck, T.: Social support and smoking cessation and maintenance. J. Consult. Clin. Psychol. 54(4), 447 (1986)CrossRefGoogle Scholar
  24. 24.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    De Solla Price, D.: Networks of scientific papers. Science 149(3683), 510–515 (1965). doi: 10.1126/science.149.3683.510 CrossRefGoogle Scholar
  26. 26.
    Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 695–704 (2011)Google Scholar
  27. 27.
    Steyvers, M., Tenenbaum, J.B.: The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cogn. Sci. 29, 41–78 (2005)CrossRefGoogle Scholar
  28. 28.
    Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. Proc. Natl. Acad. Sci. 109(16), 5962–5966 (2012)CrossRefGoogle Scholar
  29. 29.
    Van Der Hofstad, R.: Random graphs and complex networks, p. 11 (2009). http://www.win.tue.nl/rhofstad/NotesRGCN.pdf
  30. 30.
    Wormald, N.C.: Differential equations for random processes and random graphs. Ann. Appl. Prob. 5(4), 1217–1235 (1995)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations