Computer-Aided Verification for Mechanism Design

  • Gilles Barthe
  • Marco Gaboardi
  • Emilio Jesús Gallego Arias
  • Justin Hsu
  • Aaron Roth
  • Pierre-Yves Strub
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10123)

Abstract

We explore techniques from computer-aided verification to construct formal proofs of incentive properties. Because formal proofs can be automatically checked, agents do not need to manually check the properties, or even understand the proof. To demonstrate, we present the verification of a sophisticated mechanism: the generic reduction from Bayesian incentive compatible mechanism design to algorithm design given by Hartline, Kleinberg, and Malekian. This mechanism presents new challenges for formal verification, including essential use of randomness from both the execution of the mechanism and from the prior type distributions.

References

  1. 1.
    Barrett, C., Sebastini, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of satisfiability, vol. 185. IOS press (2009)Google Scholar
  2. 2.
    Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_5 CrossRefGoogle Scholar
  3. 3.
    Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.: EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-2013. LNCS, vol. 8604, pp. 146–166. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10082-1_6 CrossRefGoogle Scholar
  4. 4.
    Barthe, G., Gaboardi, M., Gallego Arias, E.J., Hsu, J., Roth, A., Strub, P.-Y.: Higher-order approximate relational refinement types for mechanism design and differential privacy. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), Mumbai, India, pp. 55–68 (2015). http://arxiv.org/abs/1407.6845
  5. 5.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/11761679_25 CrossRefGoogle Scholar
  6. 6.
    Brânzei, S., Procaccia, A.D.: Verifiably truthful mechanisms. In: ACM SIGACT Innovations in Theoretical Computer Science (ITCS), Princeton, New Jersey (2014)Google Scholar
  7. 7.
    Caminati, M.B., Kerber, M., Lange, C., Rowat, C.: Sound auction specification and implementation. In: ACM SIGecom Conference on Economics and Computation (EC), Portland, Oregon, pp. 547–564 (2015). http://doi.acm.org/10.1145/2764468.2764511
  8. 8.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: ACM SIGACT Symposium on Theory of Computing (STOC), Baltimore, Maryland, pp. 67–73. ACM (2005). http://dl.acm.org/citation.cfm?id=1060600
  9. 9.
    Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)CrossRefGoogle Scholar
  10. 10.
    Conitzer, V.: Computational aspects of preference aggregation. PhD thesis, IBM (2006)Google Scholar
  11. 11.
    Conitzer, V., Sandholm, T.: Complexity of mechanism design. In: Conference on Uncertainty in Artificial Intelligence (UAI), Edmonton, Alberta, pp. 103–110. Morgan Kaufmann Publishers Inc. (2002)Google Scholar
  12. 12.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Goldberg, A.V., Hartline, J.D., Karlin, A.R., Saks, M., Wright, A.: Competitive auctions. Games Econ. Behav. 55(2), 242–269 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Groves, T.: Incentives in teams. Econ. J. Econ. Soc. 41(4), 617–631 (1973)MathSciNetMATHGoogle Scholar
  15. 15.
    Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive, Report 2005/181 (2005). https://eprint.iacr.org/2005/181.pdf
  16. 16.
    Hart, S., Mansour, Y.: The communication complexity of uncoupled Nash equilibrium procedures. In: ACM SIGACT Symposium on Theory of Computing (STOC), San Diego, California, pp. 345–353. ACM (2007)Google Scholar
  17. 17.
    Hartline, J.D., Kleinberg, R., Malekian, A.: Bayesian incentive compatibility via matchings. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco, California, pp. 734–747. SIAM (2011)Google Scholar
  18. 18.
    Kerber, M., Lange, C., Rowat, C.: An introduction to mechanized reasoning. CoRR, abs/1603.02478, 2016. http://arxiv.org/abs/1603.02478
  19. 19.
    Li, S.: Obviously strategy-proof mechanisms. SSRN Electron. J. http://dx.doi.org/10.2139/ssrn.2560028
  20. 20.
    Milgrom, P., Segal, I.: Deferred acceptance auctions and radio spectrum reallocation (2014). http://www.as.huji.ac.il/sites/default/files/DA%20Heuristic%20Auctions%20June-2014.pdf
  21. 21.
    Mu’alem, A.: A note on testing truthfulness. In: Electronic Colloquium on Computational Complexity (ECCC), No. 130 (2005)Google Scholar
  22. 22.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy, vol. 174. MIT Press, Cambridge (2005)MATHGoogle Scholar
  23. 23.
    Sandholm, T.: Automated mechanism design: a new application area for search algorithms. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 19–36. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8_2 CrossRefGoogle Scholar
  24. 24.
    Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finan. 16(1), 8–37 (1961)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  • Gilles Barthe
    • 1
  • Marco Gaboardi
    • 2
  • Emilio Jesús Gallego Arias
    • 3
  • Justin Hsu
    • 4
  • Aaron Roth
    • 4
  • Pierre-Yves Strub
    • 1
  1. 1.IMDEA Software InstituteMadridSpain
  2. 2.University at Buffalo, SUNYBuffaloUSA
  3. 3.MINES ParisTechParisFrance
  4. 4.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations