Advertisement

Kinematics of the Normal Native Knee

  • Jan Victor
Chapter

Abstract

‘Kinematics’ is a term often used in orthopaedics, unfortunately not always in the correct sense of the word. The term ‘kinematics’ is derived from mechanical engineering and refers to the relative motion of rigid bodies. In mechanical engineering the description has to be mathematically exact and correct. Tibiofemoral kinematics of the knee is hard to describe unequivocally and mathematically correct. The reason for this is twofold:
  1. 1.

    The native knee has a natural and intrinsic laxity, allowing it to follow several kinematic patterns.

     
  2. 2.

    The kinematic pattern of the native knee consists of rotation around different axes, in addition to translations.

     

References

  1. 1.
    Weber WE, Weber E. Mechanics of the human walking apparatus. Translated by Maquet P and Furlong R Berlin etc: Springer, 1992: 75 (original publication: Mechanik der menschelichen Gehwerkzeuge. Göttingen, 1836).Google Scholar
  2. 2.
    Zuppinger H. Die aktive flexion im unbelasten Kniegelenk: Züricher Habil Schr. Wiesbaden: Bergmann; 1904. p. 703–63.Google Scholar
  3. 3.
    Frankel VH, Burstein AH, Brooks DB. Biomechanics as determined by analysis of the instant centers of motion. J Bone Joint Surg Br. 1971;53-A:945–77.CrossRefGoogle Scholar
  4. 4.
    Menschik A. Mechanik des Kniegelenks. Teil 1 Z Orthop. 1974;112:481–95.Google Scholar
  5. 5.
    Soudan K, Van Audekercke R, Martens M. Methods, difficulties and inaccuracies in the study of human joint kinematics and pathokinematics by the instant axis concept. Example: the knee joint. J Biomech. 1979;12:27–33.CrossRefPubMedGoogle Scholar
  6. 6.
    Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Blankevoort L, Huiskes R, de Lange A. Helical axes of passive knee joint motions. J Biomech. 1990;23:1219–29.CrossRefPubMedGoogle Scholar
  8. 8.
    Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG. The axes of rotation of the knee. Clin Orthop. 1993;290:259–68.Google Scholar
  9. 9.
    Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop. 1998;356:111–8.CrossRefGoogle Scholar
  10. 10.
    Iwaki H, Pinskerova V, Freeman MAR. Tibiofemoral movement 1: the shapes and relative movements of the femur and the tibia in the unloaded cadaver knee. J Bone Joint Surg. 2000;82(8):1189–95.CrossRefGoogle Scholar
  11. 11.
    Eckhoff DE, Hogan C, DiMatteo L, et al. Difference between the epicondylar and cylindrical axis of the knee. Clin Orthop. 2007;461:238–44.PubMedGoogle Scholar
  12. 12.
    Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43:638–49.CrossRefPubMedGoogle Scholar
  13. 13.
    Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop. 2003;410:69–81.CrossRefGoogle Scholar
  14. 14.
    Lu TW, Tsai TY, Kuo MY, Hsu HC, Chen HL. In vivo three dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med Eng Phys. 2008;30(8):1004–12. doi: 10.1016/j.medengphy.2008.03.001.CrossRefPubMedGoogle Scholar
  15. 15.
    Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008;26:428–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Karrholm J, Brandsson S, Freeman MAR. Tibiofemoral movement 4: changes of axial rotation caused by forced rotation at the weight bearing knee studied by RSA. J Bone Joint Surg. 2000;82-B:1201–3.CrossRefGoogle Scholar
  17. 17.
    Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MAR. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br. 2000;82-B:1196–8.CrossRefGoogle Scholar
  18. 18.
    Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MAR, Yamano Y. Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br. 2000;82-B:1199–200.CrossRefGoogle Scholar
  19. 19.
    Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biomech. 2005;38:269–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Victor J, Van Glabbeek F, Vander Sloten J, Parizel PM, Somville J, Bellemans J. An Experimental model for kinematic analysis of the knee. J Bone Joint Surg Am. 2009;91:150–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Victor J, Labey L, Wong P, Innocenti B, Bellemans J. The influence of muscle load on tibiofemoral kinematics. J Orthop Res. 2010;28(4):419–28.PubMedGoogle Scholar

Copyright information

© ISAKOS 2017

Authors and Affiliations

  • Jan Victor
    • 1
  1. 1.Ghent UniversityGhentBelgium

Personalised recommendations