A Substructural Epistemic Resource Logic

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10119)


We present a substructural epistemic logic, based on Boolean BI, in which the epistemic modalities are parametrized on agents’ local resources. The new modalities can be seen as generalizations of the usual epistemic modalities. The logic combines Boolean BI’s resource semantics with epistemic agency. We give a labelled tableaux calculus and establish soundness and completeness with respect to the resource semantics. We illustrate the use of the logic by discussing an example of side-channels in access control using resource tokens.


  1. 1.
    Anderson, G., Pym, D.: A calculus and logic of bunched resources and processes. Theor. Comput. Sci. 614, 63–96 (2016)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baltag, A., Coecke, B., Sadrzadeh, M.: Epistemic actions as resources. J. Logic Comput. 17(3), 555–585 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Collinson, M., Monahan, B., Pym, D.: A Discipline of Mathematical Systems Modelling. College Publications (2012)Google Scholar
  4. 4.
    Collinson, M., McDonald, K., Pym, D.: Layered graph logic as an assertion language for access control policy models. J. Logic Comput. (2015). doi: 10.1093/logcom/exv020
  5. 5.
    Collinson, M., McDonald, K., Pym, D.: A substructural logic for layered graphs. J. Logic Comput. 24(4), 953–988 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Courtault, J.-R., Galmiche, D.: A modal separation logic for resource dynamics. J. Logic Comput., 46 pages (2015). doi: 10.1093/logcom/exv031
  7. 7.
    Courtault, J.-R., Ditmarsch, H., Galmiche, D.: An epistemic separation logic. In: Paiva, V., Queiroz, R., Moss, L.S., Leivant, D., Oliveira, A.G. (eds.) WoLLIC 2015. LNCS, vol. 9160, pp. 156–173. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47709-0_12 Google Scholar
  8. 8.
    Courtault, J.-R., Galmiche, D., Pym, D.: A logic of separating modalities. Theor. Comput. Sci. 637, 30–58 (2016). doi: 10.1016/j.tcs.2016.04.040 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.): Handbook of Epistemic Logic. College Publications (2015)Google Scholar
  10. 10.
    Docherty, S., Pym, D.: Intuitionistic layered graph logic. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 469–486. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-40229-1_32 CrossRefGoogle Scholar
  11. 11.
    Galmiche, D., Méry, D., Pym, D.: The semantics of BI and resource tableaux. Math. Struct. Comp. Sci. 15(6), 1033–1088 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Galmiche, D., Kimmel, P., Pym, D.: A substructural epistemic resource logic (extended version). UCL research note RN/16/08 (2016). http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_16_08.pdf
  13. 13.
    Halpern, J.Y., Pucella, R.: Modeling adversaries in a logic for security protocol analysis. In: Abdallah, A.E., Ryan, P., Schneider, S. (eds.) FASec 2002. LNCS, vol. 2629, pp. 115–132. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-40981-6_11 CrossRefGoogle Scholar
  14. 14.
    O’Hearn, P., Pym, D.: The logic of bunched implications. Bull. Symbolic Logic 5(2), 215–244 (1999)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures. In: 28th ACM Symposium on Principles of Programming Languages (POPL), London, pp. 14–26 (2001)Google Scholar
  16. 16.
    Larchey-Wendling, D.: The formal strong completeness of partial monoidal Boolean BI. J. Logic Comput. 26(2), 605–640 (2014). doi: 10.1093/logcom/exu031 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Naumov, P., Tao, J.: Budget-constrained knowledge in multiagent systems. Proc. AAMAS 219–226, 2015 (2015)Google Scholar
  18. 18.
    O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Comput. Sci. 375(1–3), 271–307 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pucella, R.: Knowledge and security. Chap. 12 of [9], pp. 591–655Google Scholar
  20. 20.
    Pym, D., O’Hearn, P., Yang, H.: Possible worlds, resources: the semantics of BI. Theor. Comput. Sci. 315(1), 257–305. Erratum: p. 22, l. 22 (preprint), p. 285, 1.-12 (TCS): ‘, for some \(P^{\prime }\), \(Q \equiv P; P^{\prime }\)’ should be ‘\(P \vdash Q\)Google Scholar
  21. 21.
    Reynolds, J.: Separation logic: a logic for shared mutable data structures. IEEE Symposium on Logic in Computer Science, LICS 2002, pp. 55–74, Denmark, Copenhagen (July 2002)Google Scholar
  22. 22.
    Schneier, B.: The weakest link (2005). https://www.schneier.com/blog/archives/2005/02/the_weakest_lin.html. Schneier on security, https://www.schneier.com
  23. 23.
    Toninho, B., Caires, L.: A spatial-epistemic logic for reasoning about security protocols. In: 8th International Workshop on Security Issues in Concurrency, SecCo 2010 (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Université de Lorraine, LORIANancyFrance
  2. 2.University College LondonLondonUK

Personalised recommendations