Random Models for Evaluating Efficient Büchi Universality Checking

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10119)

Abstract

Automata-theoretic formal verification approaches the problem of guaranteeing that a program conforms to its specification by reducing conformance to language containment. We can prove conformance by representing both programs and specifications as automata and proving that the specification contains the program. This connection to the theory of automata on infinite words motivated an extensive research program into the algorithmic theory of automata on infinite words, with a focus on algorithms that perform well in practice. The focus on practical performance is important because of the large gap between worst-case complexity and practice for many automata-theoretic algorithms. Unfortunately, there are few benchmark instances of automata in industrial verification. To overcome this challenge, Tabakov and Vardi proposed a model for generating random automata as test cases.

The Tabakov-Vardi (T-V) model, however, is just one random model, based on a specific, rather simple model of random graphs. Other models of random graphs have been studied over the years. While the T-V model has the advantage of simplicity, it is not clear that performance analysis conducted on this model is robust, and an analogous analysis over other random models might yield different conclusions. To address this problem, we introduce three novel models of random automata, yielding automata that are richer in structure than the automata generated by the T-V model. By generating large corpora of random automata and using them to evaluate the performance of universality-checking algorithms, we show that the T-V model is a robust random model for evaluating performance of universality-checking algorithms.

References

  1. 1.
    Büchi, J.R.: Turing-machines and the Entscheidungsproblem. Math. Ann. 148(3), 201–213 (1962)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Doyen, L., Raskin, J.: Antichains for the automata-based approach to model-checking. arXiv preprint arXiv:0902.3958 (2009)
  3. 3.
    Fisher, C., Fogarty, S., Vardi, M.: Random models for efficient Büchi universality checking. Technical report. Department of Computer Science, Rice University, Houston, TX, October 2016. http://www.cs.rice.edu/~vardi
  4. 4.
    Fogarty, S., Vardi, M.Y.: Efficient Büchi Universality Checking. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2_17 CrossRefGoogle Scholar
  5. 5.
    Fogarty, S., Vardi, M.Y.: Büchi complementation and size-change termination. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 16–30. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00768-2_2 CrossRefGoogle Scholar
  6. 6.
    Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web as a graph: measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999). doi:10.1007/3-540-48686-0_1
  8. 8.
    Karp, R.M.: The transitive closure of a random digraph. Random Struct. Alg. 1(1), 73–93 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. Comput. Logic (TOCL) 2(3), 408–429 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Leslie, T.: Efficient approaches to subset construction. Technical report. University of Waterloo, Canada (1995)Google Scholar
  11. 11.
    de Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algorithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). doi:10.1007/11817963_5
  12. 12.
    Tsai, M.-H., Fogarty, S., Vardi, M.Y., Tsay, Y.-K.: State of Büchi complementation. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 261–271. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18098-9_28 CrossRefGoogle Scholar
  13. 13.
    Michel, M.: Complementation is more difficult with automata on infinite words. CNET, Paris (1988). 15Google Scholar
  14. 14.
    Abdulla, P.A., Chen, Y.-F., Clemente, L., Holík, L., Hong, C.-D., Mayr, R., Vojnar, T.: Advanced ramsey-based Büchi automata inclusion testing. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6_13 CrossRefGoogle Scholar
  15. 15.
    Safra, S.: On the complexity of \(\omega \)-automata. In: 29th Annual Symposium on Foundations of Computer Science, pp. 319–327. IEEE (1988)Google Scholar
  16. 16.
    Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic. Theor. Comput. Sci. 49(2), 217–237 (1987)Google Scholar
  17. 17.
    Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata constructions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 396–411. Springer, Heidelberg (2005). doi:10.1007/11591191_28 CrossRefGoogle Scholar
  18. 18.
    Tabakov, D., Vardi, M.Y.: Model checking Büchi specifications. In: Proceedings of 1st International Conference on Language and Automata Theory and Applications, pp. 565–576 (2007)Google Scholar
  19. 19.
    Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the First Symposium on Logic in Computer Science, pp. 322–331. IEEE Computer Society (1986)Google Scholar
  20. 20.
    Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70918-3_2 CrossRefGoogle Scholar
  21. 21.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Rice UniversityHoustonUSA
  2. 2.Trinity UniversitySan AntonioUSA

Personalised recommendations