Knowing Values and Public Inspection

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10119)

Abstract

We present a basic dynamic epistemic logic of “knowing the value”. Analogous to public announcement in standard DEL, we study “public inspection”, a new dynamic operator which updates the agents’ knowledge about the values of constants. We provide a sound and strongly complete axiomatization for the single and multi-agent case, making use of the well-known Armstrong axioms for dependencies in databases.

Keywords

Knowing what Bisimulation Public announcement logic 

References

  1. 1.
    Wang, Y.: Beyond knowing that: a new generation of epistemic logics. In: van Ditmarsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game Theoretical Semantics. Springer (2016, forthcoming)Google Scholar
  2. 2.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, vol. 1. Springer, Heidelberg (2007)CrossRefMATHGoogle Scholar
  3. 3.
    Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. In: Bilboa, I. (ed.) TARK 1998, pp. 43–56 (1998)Google Scholar
  5. 5.
    Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP Congress, Geneva, Switzerland, vol. 74, pp. 580–583 (1974)Google Scholar
  6. 6.
    Sweeney, L.: Only you, your doctor, and many others may know. Technology Science (2015). http://techscience.org/a/2015092903/
  7. 7.
    Wang, Y., Fan, J.: Knowing that, knowing what, and public communication: public announcement logic with KV operators. In: IJCAI 2013, pp. 1147–1154 (2013)Google Scholar
  8. 8.
    Wang, Y., Fan, J.: Conditionally knowing what. In: Advances in Modal Logic, vol. 10, pp. 569–587 (2014)Google Scholar
  9. 9.
    Gu, T., Wang, Y.: “Knowing value” logic as a normal modal logic. In: Advances in Modal Logic, vol. 11, pp. 362–381 (2016)Google Scholar
  10. 10.
    Baltag, A.: To know is to know the value of a variable. In: Advances in Modal Logic, vol. 11, pp. 135–155 (2016)Google Scholar
  11. 11.
    Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press, New York (2007)CrossRefMATHGoogle Scholar
  12. 12.
    Ciardelli, I., Roelofsen, F.: Inquisitive dynamic epistemic logic. Synthese 192(6), 1643–1687 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ciardelli, I.: Questions in logic. Ph.D. thesis, University of Amsterdam (2016)Google Scholar
  14. 14.
    Ding, Y.: Epistemic logic with functional dependency operator. Bachelor’s thesis (in Chinese), Peking University (2015)Google Scholar
  15. 15.
    More, S.M., Naumov, P.: An independence relation for sets of secrets. Stud. Logica 94(1), 73–85 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Naumov, P.: Independence in information spaces. Stud. Logica 100(5), 953–973 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Naumov, P., Nicholls, B.: Rationally functional dependence. J. Philos. Logic 43(2–3), 603–616 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Harjes, K., Naumov, P.: Functional dependence in strategic games. Notre Dame J. Formal Logic 57(3), 341–353 (2016)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jan van Eijck
    • 1
    • 2
  • Malvin Gattinger
    • 1
  • Yanjing Wang
    • 3
  1. 1.ILLCUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.SEN1CWIAmsterdamThe Netherlands
  3. 3.Department of PhilosophyPeking UniversityBeijingChina

Personalised recommendations