Neighbourhood Contingency Bisimulation

  • Zeinab Bakhtiari
  • Hans van Ditmarsch
  • Helle Hvid Hansen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10119)

Abstract

We introduce a notion of bisimulation for contingency logic interpreted on neighbourhood structures, characterise this logic as bisimulation-invariant fragment of modal logic and of first-order logic, and compare it with existing notions in the literature.

Notes

Acknowledgments

Zeinab Bakhtiari and Hans van Ditmarsch gratefully acknowledge support from European Research Council grant EPS 313360. We thank Jie Fan, Yanjing Wang and the anonymous referees for their comments which helped improve the paper substantially.

References

  1. 1.
    Brogan, A.P.: Aristotle’s logic of statements about contingency. Mind 76(301), 49–61 (1967)CrossRefGoogle Scholar
  2. 2.
    Chellas, B.F.: Modal Logic, An Intoduction. Cambridge University Press, Cambridge (1980)CrossRefMATHGoogle Scholar
  3. 3.
    Cirstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are coalgebraic. Comput. J. 54(1), 31–41 (2008)CrossRefGoogle Scholar
  4. 4.
    Fan, J.: Logical studies for non-contingency operator. Ph.D. thesis, Peking University (2015). (in Chinese)Google Scholar
  5. 5.
    Fan, J.: A note on non-contingency logic (manuscript) (2016). https://www.researchgate.net/publication/305091939
  6. 6.
    Fan, J., van Ditmarsch, H.: Neighborhood contingency logic. In: Banerjee, M., Krishna, S.N. (eds.) ICLA 2015. LNCS, vol. 8923, pp. 88–99. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-45824-2_6 Google Scholar
  7. 7.
    Fan, J., Wang, Y., van Ditmarsch, H.: Almost necessary. In: Proceedings of 10th Advances in Modal Logic (AiML), pp. 178–196 (2014)Google Scholar
  8. 8.
    Fan, J., Wang, Y., van Ditmarsch, H.: Contingency and knowing whether. Rev. Symbolic Logic 8(1), 75–107 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hansen, H.H., Kupke, C., Pacuit, E.: Neighbourhood structures: bisimilarity and basic model theory. Logical Methods Comput. Sci. 5(2) (2009). (paper 2)Google Scholar
  10. 10.
    van der Hoek, W., Lomuscio, A.: A logic for ignorance. Electron. Notes Theor. Comput. Sci. 85(2), 117–133 (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Humberstone, L.: The logic of non-contingency. Notre Dame J. Formal Logic 36(2), 214–229 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kuhn, S.: Minimal non-contingency logic. Notre Dame J. Formal Logic 36(2), 230–234 (1995)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Montague, R.: Universal grammar. Theoria 36, 373–398 (1970)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Montgomery, H., Routley, R.: Contingency and non-contingency bases for normal modal logics. Logique et Analyse 9, 318–328 (1966)MathSciNetMATHGoogle Scholar
  15. 15.
    Pattinson, D.: Coalgebraic modal logic: soundness, completeness and decidability of local consequence. Theor. Comput. Sci. 309(1–3), 177–193 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Pizzi, C.: Contingency logics and propositional quantification. Manuscrito 22(2), 283 (1999)Google Scholar
  17. 17.
    Scott, D.: Advice on modal logic. In: Lambert, K. (ed.) Philosophical Problems in Logic: Some Recent Developments, pp. 143–173. Kluwer, Dordrecht (1970)Google Scholar
  18. 18.
    Steinsvold, C.: A note on logics of ignorance and borders. Notre Dame J. Formal Logic 49(4), 385–392 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wang, Y.: Beyond knowing that: a new generation of epistemic logics. In: van Ditmarsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game Theoretical Semantics. Outstanding Contributions to Logic. Springer (2016, to appear)Google Scholar
  20. 20.
    Zolin, E.: Completeness and definability in the logic of noncontingency. Notre Dame J. Formal Logic 40(4), 533–547 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zeinab Bakhtiari
    • 1
  • Hans van Ditmarsch
    • 1
    • 2
  • Helle Hvid Hansen
    • 3
    • 4
  1. 1.LORIA, CNRS — Université de LorraineNancyFrance
  2. 2.Institute for Mathematical SciencesChennaiIndia
  3. 3.Delft University of TechnologyDelftThe Netherlands
  4. 4.CWIAmsterdamThe Netherlands

Personalised recommendations