Neighbourhood Contingency Bisimulation

  • Zeinab Bakhtiari
  • Hans van Ditmarsch
  • Helle Hvid Hansen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10119)


We introduce a notion of bisimulation for contingency logic interpreted on neighbourhood structures, characterise this logic as bisimulation-invariant fragment of modal logic and of first-order logic, and compare it with existing notions in the literature.


  1. 1.
    Brogan, A.P.: Aristotle’s logic of statements about contingency. Mind 76(301), 49–61 (1967)CrossRefGoogle Scholar
  2. 2.
    Chellas, B.F.: Modal Logic, An Intoduction. Cambridge University Press, Cambridge (1980)CrossRefMATHGoogle Scholar
  3. 3.
    Cirstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are coalgebraic. Comput. J. 54(1), 31–41 (2008)CrossRefGoogle Scholar
  4. 4.
    Fan, J.: Logical studies for non-contingency operator. Ph.D. thesis, Peking University (2015). (in Chinese)Google Scholar
  5. 5.
    Fan, J.: A note on non-contingency logic (manuscript) (2016).
  6. 6.
    Fan, J., van Ditmarsch, H.: Neighborhood contingency logic. In: Banerjee, M., Krishna, S.N. (eds.) ICLA 2015. LNCS, vol. 8923, pp. 88–99. Springer, Heidelberg (2015). doi:10.1007/978-3-662-45824-2_6 Google Scholar
  7. 7.
    Fan, J., Wang, Y., van Ditmarsch, H.: Almost necessary. In: Proceedings of 10th Advances in Modal Logic (AiML), pp. 178–196 (2014)Google Scholar
  8. 8.
    Fan, J., Wang, Y., van Ditmarsch, H.: Contingency and knowing whether. Rev. Symbolic Logic 8(1), 75–107 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hansen, H.H., Kupke, C., Pacuit, E.: Neighbourhood structures: bisimilarity and basic model theory. Logical Methods Comput. Sci. 5(2) (2009). (paper 2)Google Scholar
  10. 10.
    van der Hoek, W., Lomuscio, A.: A logic for ignorance. Electron. Notes Theor. Comput. Sci. 85(2), 117–133 (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Humberstone, L.: The logic of non-contingency. Notre Dame J. Formal Logic 36(2), 214–229 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kuhn, S.: Minimal non-contingency logic. Notre Dame J. Formal Logic 36(2), 230–234 (1995)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Montague, R.: Universal grammar. Theoria 36, 373–398 (1970)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Montgomery, H., Routley, R.: Contingency and non-contingency bases for normal modal logics. Logique et Analyse 9, 318–328 (1966)MathSciNetMATHGoogle Scholar
  15. 15.
    Pattinson, D.: Coalgebraic modal logic: soundness, completeness and decidability of local consequence. Theor. Comput. Sci. 309(1–3), 177–193 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Pizzi, C.: Contingency logics and propositional quantification. Manuscrito 22(2), 283 (1999)Google Scholar
  17. 17.
    Scott, D.: Advice on modal logic. In: Lambert, K. (ed.) Philosophical Problems in Logic: Some Recent Developments, pp. 143–173. Kluwer, Dordrecht (1970)Google Scholar
  18. 18.
    Steinsvold, C.: A note on logics of ignorance and borders. Notre Dame J. Formal Logic 49(4), 385–392 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wang, Y.: Beyond knowing that: a new generation of epistemic logics. In: van Ditmarsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game Theoretical Semantics. Outstanding Contributions to Logic. Springer (2016, to appear)Google Scholar
  20. 20.
    Zolin, E.: Completeness and definability in the logic of noncontingency. Notre Dame J. Formal Logic 40(4), 533–547 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zeinab Bakhtiari
    • 1
  • Hans van Ditmarsch
    • 1
    • 2
  • Helle Hvid Hansen
    • 3
    • 4
  1. 1.LORIA, CNRS — Université de LorraineNancyFrance
  2. 2.Institute for Mathematical SciencesChennaiIndia
  3. 3.Delft University of TechnologyDelftThe Netherlands
  4. 4.CWIAmsterdamThe Netherlands

Personalised recommendations