Ramsey Theory on Trees and Applications

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10119)


Modern Ramsey Theory on infinite structures began with the following seminal result of Ramsey.



The author gratefully acknowledges the support of NSF Grants DMS-142470 and DMS-1600781.


  1. 1.
    Avilés, A., Todorcevic, S.: Finite basis for analytic strong \(n\)-gaps. Combinatorica 33(4), 375–393 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Avilés, A., Todorcevic, S.: Types in the \(n\)-adic tree and minimal analytic gaps. Adv. Math. 292, 558–600 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dobrinen, N.: The universal triangle-free graph has finite Ramsey degrees. (2016, in preparation)Google Scholar
  4. 4.
    Dobrinen, N., Hathaway, D.: The Halpern-Läuchli Theorem at a measurable cardinal (2016, submitted). 15 pagesGoogle Scholar
  5. 5.
    Dobrinen, N., Laflamme, C., Sauer, N.: Rainbow Ramsey simple structures. Discrete Math. 339(11), 2848–2855 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Džamonja, M., Larson, J., Mitchell, W.J.: A partition theorem for a large dense linear order. Israel J. Math. 171, 237–284 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Džamonja, M., Larson, J., Mitchell, W.J.: Partitions of large Rado graphs. Arch. Math. Logic 48(6), 579–606 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Halpern, J.D., Läuchli, H.: A partition theorem. Trans. Am. Math. Soc. 124, 360–367 (1966)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Halpern, J.D., Lévy, A.: The Boolean prime ideal theorem does not imply the axiom of choice. In: Axiomatic Set Theory, pp. 83–134. American Mathematical Society (1971). Proceedings of the Symposium on Pure Mathematics, Vol. XIII, Part I, University California, Los Angeles, Calififornia (1967)Google Scholar
  10. 10.
    Henson, C.W.: A family of countable homogeneous graphs. Pac. J. Math. 38(1), 69–83 (1971)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Komjáth, P., Rödl, V.: Coloring of universal graphs. Graphs Comb. 2(1), 55–60 (1986)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Laflamme, C., Sauer, N., Vuksanovic, V.: Canonical partitions of universal structures. Combinatorica 26(2), 183–205 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Milliken, K.R.: A partition theorem for the infinite subtrees of a tree. Trans. Am. Math. Soc. 263(1), 137–148 (1981)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ramsey, F.P.: On a problem of formal logic. Proc. Lon. Math. Soc. 30, 264–296 (1929)MathSciNetMATHGoogle Scholar
  15. 15.
    Sauer, N.: Edge partitions of the countable triangle free homogenous graph. Discrete Math. 185(1–3), 137–181 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Sauer, N.: Coloring subgraphs of the Rado graph. Combinatorica 26(2), 231–253 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Shelah, S.: Strong partition relations below the power set: consistency - was Sierpinski right? II. In: Sets, Graphs and Numbers, Budapest, vol. 60, pp. 637–688 (1991). Colloq. Math. Soc. János Bolyai, North-HollandGoogle Scholar
  18. 18.
    Todorcevic, S.: Introduction to Ramsey Spaces. Princeton University Press, Princeton (2010)MATHGoogle Scholar
  19. 19.
    Todorcevic, S., Tyros, K.: A disjoint unions theorem for threes. Adv. Math. 285, 1487–1510 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Vlitas, D.: A canonical partition relation for uniform families of finite strong subtrees. Discrete Math. 335, 45–65 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of DenverDenverUSA

Personalised recommendations