Computational Complexity of a Hybridized Horn Fragment of Halpern-Shoham Logic

  • Przemysław Andrzej WałęgaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10119)


We propose hybridization of sub-propositional fragments of Halpern-Shoham logic as a way of obtaining expressive and decidable referential interval temporal logics. In the paper, we hybridize a Horn fragment of Halpern-Shoham logic whose language is restricted in its modal part to necessity modalities, and prove that satisfiability problem in this fragment is \(\textsc {NP}\)-complete over reflexive or an irreflexive and dense underlying structure of time.


Interval logic Hybrid logic Computational complexity 



The author is supported by the Polish National Science Centre grant DEC-2011/02/A/HS1/00395. He thanks Michał Zawidzki for valuable comments and stimulating discussions on hybridization of temporal logics. Moreover, the author thanks Joanna Golińvska-Pilarek, Roman Kontchakov, Carl Schultz, Michael Zakharyaschev and anonymous reviewers for their comments and suggestions on how to improve this paper.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid temporal logics. Logic J. IGPL 8(5), 653–679 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Tractable interval temporal propositional and description logics. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), pp. 1417–1423 (2015)Google Scholar
  4. 4.
    Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic J. IGPL 8(3), 339–625 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bresolin, D., Kurucz, A., Muñoz-Velasco, E., Ryzhikov, V., Sciavicco, G., Zakharyaschev, M.: Horn fragments of the halpern-shoham interval temporal logic. Technical report. arXiv preprint arXiv:1604.03515 (2016)
  6. 6.
    Bresolin, D., Muñoz-Velasco, E., Sciavicco, G.: Sub-propositional fragments of the interval temporal logic of Allen’s relations. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 122–136. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11558-0_9 Google Scholar
  7. 7.
    Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G., et al.: Interval temporal logics: a journey. Bull EATCS 3(105), 73–99 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics and duration calculi. J. Appl. Non Class. Logics 14(1–2), 9–54 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Goranko, V., Otto, M.: Model theory of modal logic. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logic, pp. 255–325. Elsevier, Amsterdam (2006)Google Scholar
  10. 10.
    Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM (JACM) 38(4), 935–962 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kontchakov, R., Pandolfo, L., Pulina, L., Ryzhikov, V., Zakharyaschev, M.: Temporal and spatial OBDA with many-dimensional Halpern-Shoham logic. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016). AAAI Press (2016)Google Scholar
  12. 12.
    Papadimitriou, C.H.: Computational Complexity. Wiley, New York (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of PhilosophyUniversity of WarsawWarsawPoland

Personalised recommendations