Advertisement

Computational Complexity of a Hybridized Horn Fragment of Halpern-Shoham Logic

  • Przemysław Andrzej Wałęga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10119)

Abstract

We propose hybridization of sub-propositional fragments of Halpern-Shoham logic as a way of obtaining expressive and decidable referential interval temporal logics. In the paper, we hybridize a Horn fragment of Halpern-Shoham logic whose language is restricted in its modal part to necessity modalities, and prove that satisfiability problem in this fragment is \(\textsc {NP}\)-complete over reflexive or an irreflexive and dense underlying structure of time.

Keywords

Interval logic Hybrid logic Computational complexity 

Notes

Acknowledgements

The author is supported by the Polish National Science Centre grant DEC-2011/02/A/HS1/00395. He thanks Michał Zawidzki for valuable comments and stimulating discussions on hybridization of temporal logics. Moreover, the author thanks Joanna Golińvska-Pilarek, Roman Kontchakov, Carl Schultz, Michael Zakharyaschev and anonymous reviewers for their comments and suggestions on how to improve this paper.

References

  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefMATHGoogle Scholar
  2. 2.
    Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid temporal logics. Logic J. IGPL 8(5), 653–679 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Tractable interval temporal propositional and description logics. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), pp. 1417–1423 (2015)Google Scholar
  4. 4.
    Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic J. IGPL 8(3), 339–625 (2000)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bresolin, D., Kurucz, A., Muñoz-Velasco, E., Ryzhikov, V., Sciavicco, G., Zakharyaschev, M.: Horn fragments of the halpern-shoham interval temporal logic. Technical report. arXiv preprint arXiv:1604.03515 (2016)
  6. 6.
    Bresolin, D., Muñoz-Velasco, E., Sciavicco, G.: Sub-propositional fragments of the interval temporal logic of Allen’s relations. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 122–136. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11558-0_9 Google Scholar
  7. 7.
    Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G., et al.: Interval temporal logics: a journey. Bull EATCS 3(105), 73–99 (2013)MathSciNetMATHGoogle Scholar
  8. 8.
    Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics and duration calculi. J. Appl. Non Class. Logics 14(1–2), 9–54 (2004)CrossRefMATHGoogle Scholar
  9. 9.
    Goranko, V., Otto, M.: Model theory of modal logic. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logic, pp. 255–325. Elsevier, Amsterdam (2006)Google Scholar
  10. 10.
    Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM (JACM) 38(4), 935–962 (1991)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kontchakov, R., Pandolfo, L., Pulina, L., Ryzhikov, V., Zakharyaschev, M.: Temporal and spatial OBDA with many-dimensional Halpern-Shoham logic. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016). AAAI Press (2016)Google Scholar
  12. 12.
    Papadimitriou, C.H.: Computational Complexity. Wiley, New York (2003)MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of PhilosophyUniversity of WarsawWarsawPoland

Personalised recommendations