On Semantic Gamification

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10119)

Abstract

The purpose of this essay is to study the extent in which the semantics for different logical systems can be represented game theoretically. I will begin by considering different definitions of what it means to gamify a semantics, and show completeness and limitative results. In particular, I will argue that under a proper definition of gamification, all finitely algebraizable logics can be gamified, as well as some infinitely algebraizable ones (like Łukasiewicz) and some non-algebraizable (like intuitionistic and van Fraassen supervaluation logic).

References

  1. 1.
    Cintula, P., Majer, O.: Towards evaluation games for fuzzy logics. In: Majer, O., Pietarinen, A.V., Tulenheimo, T. (eds.) Games: Unifying Logic, Language, and Philosophy. Logic, Epistemology, and the Unity of Science, vol. 15, pp. 117–138. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  2. 2.
    Fermüller, C.G.: Dialogue games for many-valued logics - an overview. Stud. Logica. 90(1), 43–68 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Fermüller, C.G.: On matrices, Nmatrices and Games. J. Logic Comput. (2013)Google Scholar
  4. 4.
    Hähnle, R.: Advanced many-valued logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol. 2, pp. 297–395. Springer, Dordrecht (2001)CrossRefGoogle Scholar
  5. 5.
    Hintikka, J.: Logic, Language Games, and Information. Clarendon Press, Oxford (1973)MATHGoogle Scholar
  6. 6.
    Hintikka, J., Sandu, G.: Game-Theoretical Semantics (1997)Google Scholar
  7. 7.
    Kleene, S.C.: On notation for ordinal numbers. J. Symbolic Logic 3(4), 150–155 (1938)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kleene, S.C.: Introduction to Metamathematics: Bibliotheca Mathematica. Wolters-Noordhoff, Groningen (1952)MATHGoogle Scholar
  9. 9.
    Łukasiewicz, J., Borkowski, L.: Selected Works: Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam (1970)Google Scholar
  10. 10.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)MATHGoogle Scholar
  11. 11.
    Mundici, D.: Ulam’s games, Łucasiewicz logic, and AFC*-algebras. Fundamenta Informaticae 18, 151 (1993)MathSciNetGoogle Scholar
  12. 12.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT press, Cambridge (1994)MATHGoogle Scholar
  13. 13.
    Parikh, R.: D-structures and their semantics. Not. AMS 19, A329 (1972)Google Scholar
  14. 14.
    Parikh, R.: The logic of games and its applications. Ann. Discrete Math. 102, 111–140 (1985)MathSciNetMATHGoogle Scholar
  15. 15.
    Post, E.L.: Introduction to a general theory of elementary propositions. Am. J. Math. 43(3), 163–185 (1921)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Urquhart, A.: Basic many-valued logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol. 2, pp. 249–295. Springer, Dordrecth (2001)CrossRefGoogle Scholar
  17. 17.
    van Benthem, J.: Logic games are complete for game logics. Studia Logica. Int. J. Symbolic Logic 75, 183–203 (2003)MathSciNetMATHGoogle Scholar
  18. 18.
    van Benthem, J.: Logic in Games. MIT Press, Cambridge (2014)MATHGoogle Scholar
  19. 19.
    van Fraassen, B.C.: Presuppositions: supervaluations and free logic. In: Lambert, K. (ed.) The Logical Way of doing Things, pp. 67–92. Yale University Press (1969)Google Scholar
  20. 20.
    van Fraassen, B.C.: Singular terms, truth-value gaps, and free logic. J. Philos. 63(17), 481–495 (1966)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Columbia UniversityNew York CityUSA

Personalised recommendations