# On Semantic Gamification

Conference paper

First Online:

## Abstract

The purpose of this essay is to study the extent in which the semantics for different logical systems can be represented game theoretically. I will begin by considering different definitions of what it means to *gamify* a semantics, and show completeness and limitative results. In particular, I will argue that under a proper definition of gamification, all finitely algebraizable logics can be gamified, as well as some infinitely algebraizable ones (like Łukasiewicz) and some non-algebraizable (like intuitionistic and van Fraassen supervaluation logic).

## Keywords

Nash Equilibrium Classical Logic Terminal Node Intuitionistic Logic Propositional Variable
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

- 1.Cintula, P., Majer, O.: Towards evaluation games for fuzzy logics. In: Majer, O., Pietarinen, A.V., Tulenheimo, T. (eds.) Games: Unifying Logic, Language, and Philosophy. Logic, Epistemology, and the Unity of Science, vol. 15, pp. 117–138. Springer, Dordrecht (2009)CrossRefGoogle Scholar
- 2.Fermüller, C.G.: Dialogue games for many-valued logics - an overview. Stud. Logica.
**90**(1), 43–68 (2008)MathSciNetCrossRefMATHGoogle Scholar - 3.Fermüller, C.G.: On matrices, Nmatrices and Games. J. Logic Comput. (2013)Google Scholar
- 4.Hähnle, R.: Advanced many-valued logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol. 2, pp. 297–395. Springer, Dordrecht (2001)CrossRefGoogle Scholar
- 5.Hintikka, J.: Logic, Language Games, and Information. Clarendon Press, Oxford (1973)MATHGoogle Scholar
- 6.Hintikka, J., Sandu, G.: Game-Theoretical Semantics (1997)Google Scholar
- 7.Kleene, S.C.: On notation for ordinal numbers. J. Symbolic Logic
**3**(4), 150–155 (1938)MathSciNetCrossRefMATHGoogle Scholar - 8.Kleene, S.C.: Introduction to Metamathematics: Bibliotheca Mathematica. Wolters-Noordhoff, Groningen (1952)MATHGoogle Scholar
- 9.Łukasiewicz, J., Borkowski, L.: Selected Works: Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam (1970)Google Scholar
- 10.Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)MATHGoogle Scholar
- 11.Mundici, D.: Ulam’s games, Łucasiewicz logic, and AFC*-algebras. Fundamenta Informaticae
**18**, 151 (1993)MathSciNetGoogle Scholar - 12.Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT press, Cambridge (1994)MATHGoogle Scholar
- 13.Parikh, R.: D-structures and their semantics. Not. AMS
**19**, A329 (1972)Google Scholar - 14.Parikh, R.: The logic of games and its applications. Ann. Discrete Math.
**102**, 111–140 (1985)MathSciNetMATHGoogle Scholar - 15.Post, E.L.: Introduction to a general theory of elementary propositions. Am. J. Math.
**43**(3), 163–185 (1921)MathSciNetCrossRefMATHGoogle Scholar - 16.Urquhart, A.: Basic many-valued logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol. 2, pp. 249–295. Springer, Dordrecth (2001)CrossRefGoogle Scholar
- 17.van Benthem, J.: Logic games are complete for game logics. Studia Logica. Int. J. Symbolic Logic
**75**, 183–203 (2003)MathSciNetMATHGoogle Scholar - 18.van Benthem, J.: Logic in Games. MIT Press, Cambridge (2014)MATHGoogle Scholar
- 19.van Fraassen, B.C.: Presuppositions: supervaluations and free logic. In: Lambert, K. (ed.) The Logical Way of doing Things, pp. 67–92. Yale University Press (1969)Google Scholar
- 20.van Fraassen, B.C.: Singular terms, truth-value gaps, and free logic. J. Philos.
**63**(17), 481–495 (1966)CrossRefGoogle Scholar

## Copyright information

© Springer-Verlag GmbH Germany 2017