Conversation and Games

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10119)


In this paper we summarize concepts from earlier work and demonstrate how infinite sequential games can be used to model strategic conversations. Such a model allows one to reason about the structure and complexity of various kinds of winning goals that conversationalists might have. We show how to use tools from topology, set-theory and logic to express such goals. We then show how to tie down the notion of a winning condition to specific discourse moves using techniques from Mean Payoff games and discounting. We argue, however, that this still requires another addition from epistemic game theory to define appropriate solution and rationality underlying a conversation.


Strategic reasoning Conversations Dialogues Infinite games Epistemic game theory 


  1. 1.
    Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press, Cambridge (2003)Google Scholar
  2. 2.
    Asher, N., Lascarides, A.: Strategic conversation. Semantics, Pragmatics 6(2) (2013).
  3. 3.
    Asher, N., Paul, S., Evaluating conversational success: weighted message exchange games. In: Hunter, J., Stone, M. (eds.) 20th Workshop on the Semantics and Pragmatics of Dialogue (SEMDIAL), New Jersey, USA, July 2016 (2016, to appear)Google Scholar
  4. 4.
    Hintikka, J.: Language-games. In: Saarinen, E. (ed.) Game-Theoretical Semantics. Synthese Language Library, vol. 6790, pp. 1–26. Springer, Netherlands (2011). doi: 10.1007/978-1-4020-4108-2_1 Google Scholar
  5. 5.
    Asher, N., Paul, S., Venant, A.: Message exchange games in strategic conversation. J. Philos. Log. (2016). doi: 10.1007/s10992-016-9402-1
  6. 6.
    Asher, N., Paul, S., Venant, A.: Message exchange games in strategic conversations. J. Philos. Log. (2016, in press)Google Scholar
  7. 7.
    Aumann, R.: Subjectivity and correlation in randomized strategies. J. Math. Econom. 1, 67–96 (1974)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common knowledge and private suspicions. Technical report SEN-R9922, Centrum voor Wiskunde en Informatica (1999)Google Scholar
  10. 10.
    Bernheim, B.D.: Rationalizable strategic behaviour. Econometrica 52(4), 1007–1028 (1984)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Crawford, V., Sobel, J.: Strategic information transmission. Econometrica 50(6), 1431–1451 (1982)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dekel, E., Siniscalchi, M.: Epistemic game theory. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory with Economic Applications, vol. 4, chap. 12, pp. 619–702. Elsevier Publications (2015)Google Scholar
  13. 13.
    Franke, M.: Semantic meaning and pragmatic inference in non-cooperative conversation. In: Icard, T., Muskens, R. (eds.) Interfaces: Explorations in Logic. Language and Computation, Lecture Notes in Artificial Intelligence, pp. 13–24. Springer-Verlag, Berlin, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gaiffman, H.: On local and non-local properties. In: Proceedings of the Herbrand Symposium, Logic Colloquium 1981. North Holland (1982)Google Scholar
  15. 15.
    Glazer, J., Rubinstein, A.: On optimal rules of persuasion. Econometrica 72(6), 119–123 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Harsanyi, J.C.: Games with incomplete information played by bayesian players, parts i-iii. Manag. Sci. 14, 159–182 (1967)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kechris, A.: Classical Descriptive Set Theory. Springer-Verlag, New York (1995)CrossRefMATHGoogle Scholar
  19. 19.
    Libkin, L.: Elements of finite model theory. Springer, Heidelberg (2004)CrossRefMATHGoogle Scholar
  20. 20.
    McNaughton, R., Papert, S.: Counter-free automata. In: Research Monograph, vol. 65. MIT Press, Cambridge (1971)Google Scholar
  21. 21.
    Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Spence, A.M.: Job market signaling. J. Econom. 87(3), 355–374 (1973)Google Scholar
  23. 23.
    Venant, A.: Structures, semantics and games in strategic conversations. Ph.D. thesis, Université Paul Sabatier, Toulouse (2016)Google Scholar
  24. 24.
    Venant, A., Asher, N.: Dynamics of public commitments in dialogue. In: Proceedings of the 11th International Conference on Computational Semantics, pp. 272–282, London, UK, Association for Computational Linguistics, April 2015Google Scholar
  25. 25.
    Asher, N., Venant, A.: Ok or not ok? In: Semantics and Linguistic Theory 25. Cornell University Press, New York (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut de Recherche en Informatique de ToulouseToulouseFrance

Personalised recommendations