Skip to main content

Wachstumskinetik

  • Chapter
  • First Online:
Book cover Bioprozesstechnik

Zusammenfassung

Mikroorganismen (Bakterien, Hefen, Pilze, Mikroalgen) und Gewebezellen (tierische Zellen, pflanzliche Zellen) werden neben isolierten Enzymen als Biokatalysatoren in vielfältiger Weise in der industriellen Produktion eingesetzt. Die quantitative Kenntnis der Reaktionsgeschwindigkeiten dieser Biokatalysatoren (Substratverbrauch, Wachstum und Produktbildung) in Abhängigkeit der Reaktionsbedingungen ist von zentraler Bedeutung für Auslegung und Betrieb von Bioreaktoren. Die grundlegenden Konzepte zur Wachstumsmodellierung von Mikroorganismen und Zellen werden in diesem Kapitel beschrieben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Müller S (2007) Modes of cytometric bacterial DNA pattern: A tool for pursuing growth. Cell Proliferat 40:621–639

    Article  Google Scholar 

  2. Zwietering MH, Jongenburger I, Rombouts FM, van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:18575–1881

    Google Scholar 

  3. Bellgardt K-H (1991) Cell models. In: Rehm H-J, Reed G, Pühler A, Stadler P, Schügerl K (Hrsg) Biotechnology, Vol. 4, Measuring, Modeling and Control, VCH, Weinheim, S 267–298

    Google Scholar 

  4. Monod J (1942) Recherches sur la croissance des cultures bacteriennes, 2. Aufl. Hermann, Paris

    Google Scholar 

  5. Andrews JF (1968) A mathematical model for continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10:707

    Article  CAS  Google Scholar 

  6. Levenspiel O (1980) The Monod equation: a revisit and a generalization to product inhibition situations. Biotechnol Bioeng 22:1671–1687

    Article  CAS  Google Scholar 

  7. Ierusalimski ND, Neronova NM (1965) Quality concentration of exchange products as dependent on rate of growth of microorganisms. Doklady Akademii Nauk SSSR 161:1437

    Google Scholar 

  8. Edwards VH (1970) The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng 12:679

    Article  CAS  Google Scholar 

  9. Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Ser B 163:224

    Article  CAS  Google Scholar 

  10. Tsao GT, Hanson TP (1975) Extended Monod equation for batch cultures with multiple exponential phases. Biotechnol Bioeng 12:1591–1598

    Article  Google Scholar 

  11. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier, Amsterdam

    Google Scholar 

  12. Gaden EL (1959) Fermentation process kinetics. J Biochem Microbiol Techn Eng 1:413–429

    Article  CAS  Google Scholar 

  13. Takors R, Wiechert W, Weuster-Botz D (1997) Experimental design for the identification of macrokinetic models and model discrimination. Biotech Bioeng 56:564–576

    Article  CAS  Google Scholar 

  14. Nielsen J (1993) A simple morphologically structured model describing the growth of filamentous microorganisms. Biotechnol Bioeng 41:715–727

    Article  CAS  Google Scholar 

  15. De Ory I, Romero LE, Cantero D (1998) Modelling the kinetics of growth of Acetobacter aceti in discontinuous culture: influence of the temperature of operation. Appl Microbiol Biotechnol 49:189û193

    Article  Google Scholar 

  16. Olsen KN, Budde BB, Siegumfeldt H, Rechinger KB, Jakobsen M, Ingmer H (2002) Noninvasive measurement of bacterial intracellular pH on a single-cell level with green fluorescent protein and fluorescence ratio imaging microscopy. Appl Environ Microbiol 68:4145–4147

    Article  CAS  Google Scholar 

  17. Shimamoto T, Inaba K, Thelen P, Ishikawa T, Goldberg EB, Tsuda M, Tsuchiya T (1994) The NhaB Na+/H+ antiporter is essential for intracellular pH regulation under alkaline conditions in Escherichia coli. J Biochem 116:285–290

    Article  CAS  Google Scholar 

  18. Nicholls DG, Fergusan SJ (1992) Bioenergetics 2. Academic Press, London

    Google Scholar 

  19. Ackermann T (1992) Physikalische Biochemie. Springer, Berlin

    Book  Google Scholar 

  20. Lehninger AL, Nelson DL, Cox MM (1994) Prinzipien der Biochemie, 2. Aufl. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  21. Schuhmacher T, Löffler M, Hurler T, Takors R (2014) Phosphate limited fed-batch process: Impact on carbon usage and energy metabolism in Escherichia coliEscherichia coli. J Biotechnol 190:96–104

    Article  CAS  Google Scholar 

  22. Pyle AM (1996) Role of metal ions in ribozymes. Met Ions Biol Syst: 479–520

    Google Scholar 

  23. Silver S (1998) Genes for all metalls – A bacterial view of the periodic table. The 1996 Thom Award Lecture. J Ind Microbiol Biotechnol 20:1–12

    Article  CAS  Google Scholar 

  24. Otterbach H (1974) Äthylendiamin-tetraessigsäure. In: Ullmanns Encyklopädie der technischen Chemie, Bd 8, 4. Aufl. Verlag Chemie, Weinheim

    Google Scholar 

  25. Silver S, Perry RD (1982) Bacterial inorganic cation and anion transport systems. In: Martonosi AN (Hrsg) Membranes and transport, Bd 2. Plenum Press, New York, S 115–121

    Chapter  Google Scholar 

  26. Jasper P, Silver S (1977) Magnesium transport in microorganisms. In: Weinberg ED (Hrsg) Microorganisms and minerals, Marcel Dekker, Inc. New York, S. 7–47

    Google Scholar 

  27. Marks J (1993) Biological functions of vitamins. In: Ottaway PB (Hrsg) The technology of vitamins in food, Chapman & Hall, London

    Google Scholar 

  28. Zabriskie DW, Armiger WB, Phillips DH, Albano PA (1982): Trader’s guide to fermentation media formulation. Traders protein, P.O. box 8407, Memphis, Tennessee 38108, USA

    Google Scholar 

  29. Weuster-Botz D (2000) Experimental design for fermentation media development: Statistical design or global random search? J Bioscience Bioeng 90:473–483

    Article  CAS  Google Scholar 

  30. Khuri AI, Cornell JA (1987) Response surfaces. Marcel Dekker, New York

    Google Scholar 

  31. Holland JH (1975) Adaption in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  32. Link H, Weuster-Botz D (2006) Genetic algorithm for multi-objective experimental optimization. Bioprocess Biosyst Eng 29:385–390

    Article  CAS  Google Scholar 

  33. Sprave J (1995) Evolutionäre Algorithmen zur Parameteroptimierung. at 43:110–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Weuster-Botz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weuster-Botz, D., Takors, R. (2018). Wachstumskinetik. In: Chmiel, H., Takors, R., Weuster-Botz, D. (eds) Bioprozesstechnik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54042-8_2

Download citation

Publish with us

Policies and ethics