Advertisement

Enzymatische Prozesse

Chapter

Zusammenfassung

Bei enzymatischen Produktionsprozessen geht es um biokatalytische Stoffumwandlungen, an denen sehr häufig nur ein einzelnes Enzym (Einschrittreaktion) oder eine überschaubare Kaskade mehrerer Enzyme beteiligt sind. Diese Stoffumwandlungen werden auch als Biotransformationen bezeichnet. Im Gegensatz dazu werden bei mikrobiellen Prozessen, die Gegenstand von Kap. 11 sind, ganze Stoffwechselnetzwerke von Zellen dazu genutzt, gewünschte Produkte in der Regel ausgehend von natürlichen Kohlenstoff- und gegebenenfalls Stickstoffquellen herzustellen.

Literatur

  1. [1]
    Anderson BA, Hansen MM, Harkness AR, Henry CL, Vicenzi JT, Zmijewski MJ (1995) Application of a practical biocatalytic reduction to an enantioselective synthesis of the 5H-2,3-Benzodiazepine LY300164. J Am Chem Soc 117:12358–12359CrossRefGoogle Scholar
  2. [2]
    Asano Y, Hoelsch K (2012) Isomerizations. In: Drauz K, Gröger H, May O (Hrsg) Enzyme catalysis in organic synthesis, 3. Aufl. Vol. 3, S 1609–1684, Wiley-VCH, WeinheimGoogle Scholar
  3. [3]
    Barlett K, Eaton S (2004) Mitochondrial β-oxidation. Eur J Biochem 271:462–469CrossRefGoogle Scholar
  4. [4]
    Birch O, Brass J, Kiener A, Robins K, Schmidhalter DR, Shaw N, Zimmermann N (1995) Biotechnological process in the fine chemicals industry. Chim Oggi Chem Today 9:9–13Google Scholar
  5. [5]
    Bommarius AS, Paye MF (2013) Stabilizing biocatalysts. Chem Soc Rev 42:6534–6565CrossRefGoogle Scholar
  6. [6]
    Bommarius AS, Riebel BR (2004) Biocatalysis 1–18. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  7. [7]
    Braun M, Sun B, Anselment B, Weuster-Botz D (2012): Novel whole-cell biocatalysis with recombinant hydroxysteroid dehydrogenases for the asymmetric reduction of dehydrocholic acid. Appl Microbiol Biotechnol 95:1457–1468CrossRefGoogle Scholar
  8. [8]
    Bräutigam S, Dennewald D, Schürmann M, Lutje-Spelberg J, Pitner W-R, Weuster-Botz D (2009) Whole-cell biocatalysis: Evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones. Enzyme Microb Tech 45:310–316CrossRefGoogle Scholar
  9. [9]
    Buchholz K, Kasche V, Bornscheuer UT (2012) Biocatalysts and enzyme technology, 313–358. Wiley-VCH, WeinheimGoogle Scholar
  10. [10]
    Cantone S, Ferrario V, Corici L, Ebert C, Fattor D, Spizzo P, Gardossi L (2013) Efficient immobilisation of industrial biocatalysts: Criteria and constraints for the selection of organic polymeric carriers and immobilization methods. Chem Soc Rev 42:6262–6276CrossRefGoogle Scholar
  11. [11]
    Cao L (2005) Introduction: Immobilized enzymes: Past, present and prospects in carrier-bound immobilized enzymes: Principles, application and design. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  12. [12]
    Cao L, van Langen LM, van Rantwijk F, Sheldon RA (2001) Cross-linked aggregates of penicillin acylase: Robust catalysts for the synthesis of β-lactam antibiotics. J Mol Catal B Enz 11:665–670CrossRefGoogle Scholar
  13. [13]
    Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 43: 1019–1032Google Scholar
  14. [14]
    Carman HF (1982) A trend projection of high fructose corn syrup substitution for sugar. Am J Agr Econ 64:625–633CrossRefGoogle Scholar
  15. [15]
    Carrea G, Pilotti A, Riva S, Canzi E, Ferrari A (1992) Enzymatic synthesis of 12-ketoursodeoxycholic acid from dehydrocholic acid in a membrane reactor. Biotechnol Lett 14:1131–1134CrossRefGoogle Scholar
  16. [16]
    Christensen MW, Andersen L, Husum TL, Kirk O (2003) Industrial lipase immobilization. Eur J Lipid Sci Tech 105:318–321CrossRefGoogle Scholar
  17. [17]
    Cui J, Jia S, Liang J, Zhao Y, Feng Y (2015) Mesoporous CLEAs-silicate composite microparticles with high activity and enhanced stability. Scientific Reports 5:14203CrossRefGoogle Scholar
  18. [18]
    Dennewald D, Pitner W-R, Weuster-Botz D (2011) Recycling of the ionic liquid phase in process integrated biphasic whole-cell Biocatalysis. Proc Biochem 46:1132–1137CrossRefGoogle Scholar
  19. [19]
    DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474CrossRefGoogle Scholar
  20. [20]
    Engelking H, Pfaller R, Wich G, Weuster-Botz D (2004) Stereoselective reduction of ethyl 4-chloro acetoacetate with recombinant Pichia pastoris. Tetrahedron: Asymmetr 15:3591–3593CrossRefGoogle Scholar
  21. [21]
    Faber K (2011) Biotransformations in organic chemistry. 6. Ausgabe, 1–10. Springer, HeidelbergGoogle Scholar
  22. [22]
    Ghisalba O, Meyer HP, Wohlgemuth R (2010) Industrial biotransformation. Encyclopedia of Industrial Biotechnology. John Wiley & Sons, Hoboken S 1–34.Google Scholar
  23. [23]
    Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilization. Chem Soc Rev 38:453–468CrossRefGoogle Scholar
  24. [24]
    Hanover LM, White JS (1993) Manufacturing, composition, and applications of fructose. Am J Clin Nutr 58:724–732CrossRefGoogle Scholar
  25. [25]
    Hoeks FWJMM (1991) Process for the microbiological discontinual preparation of L-carnitine. Lonza, EP 0410430Google Scholar
  26. [26]
    Hofmann AF (1963) The preparation of chenodeoxycholic acid and its glycine and taurine conjugates. Acta Chem Scand 17:173–186CrossRefGoogle Scholar
  27. [27]
    Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Archiv für experimentelle Pathologie und Pharmakologie 24:247–260Google Scholar
  28. [28]
    Ho LF, Li SY, Lin SC, Hsu WH (2004) Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents. Proc Biochem 39:1573–1581CrossRefGoogle Scholar
  29. [29]
    Ilanes A, Wilson L, Altamirano C, Cabrera Z, Alvarez L, Aguirre C (2007) Production of cephalexin in organic medium at high substrate concentrations with CLEA of penicillin acylase and PGA-450. Enzyme Microb Technol 40:195–203CrossRefGoogle Scholar
  30. [30]
    Iwamoto FM, Kreisl TN, Kim L, Duic JP, Butman JA, Albert PS, Fine HA (2010) Phase II trial of talampanel, a glutamate receptor inhibitor, for adults with recurrent malignant gliomas. cancer 116(7):1776–1782CrossRefGoogle Scholar
  31. [31]
    Kang M-S, Han S-S, Kim M-Y, Kim B-Y, Huh J-P, Kim H-S, Lee J-H (2014) High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcu rhodochrous for acrylamide production. Appl Microbiol Biotechnol 98:4379–4387CrossRefGoogle Scholar
  32. [32]
    Kamm B, Kamm M, Kiener A, Meyer H-P (2005) Polycarnitine – a new biomaterial. Appl Microbiol Biotechnol 67(1):1–7CrossRefGoogle Scholar
  33. [33]
    Kamerbeek NM, Janssen DB, van Berkel WJH, Fraaije MW (2003) Baeyer-Villiger monooxygenases, an emerging family of flavin-dependent biocatalysts. Adv Synth Catal 345:667–678CrossRefGoogle Scholar
  34. [34]
    Kim B-Y, Hyun H-H (2002) Production of acrylamide using immobilized cells of Rhodococcus rhodochrous M33. Biotechnol Bioprocess Eng 7:194–200CrossRefGoogle Scholar
  35. [35]
    Kim B-Y, Kim J-C, Lee H-H, Hyun H-H (2001): Fed-batch production of nitrile hydratase by Rhodococcus rhodochrous M33. Biotechnol Bioprocess Eng 6:11Google Scholar
  36. [36]
    Krasňan V, Stloukal R, Rosenberg M, Rebroš M (2016) Immobilization of cells and enzymes to LentiKats. Appl Microbio Biotechnol 100:2535–2553CrossRefGoogle Scholar
  37. [37]
    Kulla H (1991) Enzymatic hydroxylations in industrial application. Chimia 45:81–85Google Scholar
  38. [38]
    Kula MR, Kragl U (2000) Dehydrogenases in the synthesis of chiral compounds. In: Patel RN (Hrsg). Stereoselective Biocatalysis: 839–866. Marcel Dekker: New York-BaselCrossRefGoogle Scholar
  39. [39]
    Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: Current status and prospects. Appl Microbiol Biotechnol 69:1–8.CrossRefGoogle Scholar
  40. [40]
    Liese A, Seelbach K, Wandrey C, (2006) Industrial biotransformations, 508–511. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  41. [41]
    Liu L, Aigner A, Schmid RD (2010) Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7ß-hydroxysteroid dehydrogenase from Collinsella aerofaciens. Appl Microbiol Biotechnol 90:127–135CrossRefGoogle Scholar
  42. [42]
    Liu Z-Q, Ye J-J, Shen Z-Y, Hong H-B, Yan J-B, Lin Y, Chen Z-X, Zheng Y-G, Shen Y-C (2015) Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system. Appl Microbiol Biotechnol 99:2119–2129CrossRefGoogle Scholar
  43. [43]
    López-Serrano P, Cao L, van Rantwijk F, Sheldon RA (2002) Cross-linked enzyme aggregates with enhanced activity: Application to lipases. Biotechnol Lett 24:1379–1383CrossRefGoogle Scholar
  44. [44]
    Luszczki JJ (2009)Third-generation antiepileptic drugs: Mechanisms of action, pharmacokinetics and interactions. Pharmacol Rep 61:197–216CrossRefGoogle Scholar
  45. [45]
    Machielsen R, Looger LL, Raedts J, Dijkhuizen S, Hummel W, Hennemann H-G, Dausmann T, van der Oost J (2009) Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design. Eng Life Sci 9:38–44CrossRefGoogle Scholar
  46. [46]
    Meyer H-P, Robins K (2005) Large scale bioprocess for the production of optically pure l-carnitine. Monatsh Chem 136:1269–1277CrossRefGoogle Scholar
  47. [47]
    Mueller DM, Seim H, Kiess W, Loester H, Richter T (2002) Effects of oral L-carnitine supplementation on in vivo long chain fatty acid oxidation in healthy adults. Metabolism 51(11):1389–1391CrossRefGoogle Scholar
  48. [48]
    Mermod N, Ramos JL, Bairoch A, Timmis KN (1987) The xylS gene positive regulator of TOL plasmid pWWO: identification, sequence analysis and overproduction leading to constitutive expression of meta cleavage operon. Mol Gen Genet 207(2):349–354CrossRefGoogle Scholar
  49. [49]
    Nelson JM, Griffin EG (1916) Adsorption of invertase. J Am Chem Soc 38(5):1109–1115CrossRefGoogle Scholar
  50. [50]
    Pascuzzi RM, Shefner J, Chappell AS, Bjerke JS, Tamura R, Chaudhry V, Clawson L, Haas L, Rothstein JD (2009) A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis (ALS) 11(3):266–271CrossRefGoogle Scholar
  51. [51]
    Persichetti RA, St. Clair NL, Griffith JP, Navia A, Margolin AL (1994) Cross-linked enzyme crystals (CLECs) of thermolysin in the synthesis of peptides. J Am Chem Soc 117:2732–2737CrossRefGoogle Scholar
  52. [52]
    Peuker U, Thomas O, Hobley T, Franzreb M, Berensmeier S, Schäfer M, Hickstein B (2010) Bioseparation, magnetic particle adsorbents, Encyclopedia of Industrial Biotechnology. John Wiley & Sons, HobokenGoogle Scholar
  53. [53]
    Pfaller R (2008) Designer-Mikroorganismen – Die Zelle als nachhaltige Fabrik dargestellt am Beispiel der Produktion chiraler Hydroxyverbindungen. Abschlussbericht zum BMBF-Verbundprojekt 0313440B. http://doi.org/10.2314/GBV:590400517.
  54. [54]
    Pfaller R, Stohrer J (2007) Verfahren zur enzymatischen Herstellung von chiralen Alkoholen. DE102006010994 A1.Google Scholar
  55. [55]
    Pfründer H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124:182–190CrossRefGoogle Scholar
  56. [56]
    Philippaerts A, Jacobs PA, Sels BF (2013) Hat die Hydrierung von Pflanzenölen noch eine Zukunft? Angew Chem 125:5328–5334CrossRefGoogle Scholar
  57. [57]
    Quiocho FA, Richards FM (1966) The enzymic behavior of carboxypeptidase-a in the solid state. Biochemistry 5:4062–4076CrossRefGoogle Scholar
  58. [58]
    Robins K, Gordon J (2011) Whole cell production of fine chemicals and intermediates. In: Tao A, Kazlauskas RJ (Hrsg) Biocatalysis for green chemistry and chemical process development, S 297–324, John Wiley & Sons, New YorkGoogle Scholar
  59. [59]
    Robins KT, Osorio-Lozada A, Avi M, Meyer HP (2009) Lonza: Biotechnology – a key ingredient for success in the future. Chimia 63:327–330CrossRefGoogle Scholar
  60. [60]
    Rohner M, Meyer H-P (1995) Applications of modelling for bioprocess design and control in industrial production. Bioproc Eng 13:69–78CrossRefGoogle Scholar
  61. [61]
    Rother C, Nidetzky B (2014) Enzyme immobilization by microencapsulation: Methods, materials, and technological applications. Encyclopedia of Industrial Biotechnology. John Wiley & Sons, Hoboken, S 1–21Google Scholar
  62. [62]
    Schoevaart R, Wolbers MW, Golubovic M, Ottens M, Kieboom APG, van Rantwijk F, van der Wielen LAM, Sheldon RA (2004) Preparation, optimization and structures of cross-linked enzyme aggregates (CLEAs) Biotechnol Bioeng 87:754–762CrossRefGoogle Scholar
  63. [63]
    Sardar M, Gupta MN (2005) Immobilization of tomato pectinase on con a-seralose 4B by bioaffinity layering. Enzyme Microb Technol 37:355–359CrossRefGoogle Scholar
  64. [64]
    Sheldon RA (2007) Enzyme immobilization: The quest for optimum performance. Adv Synth Catal 349:1289–1307CrossRefGoogle Scholar
  65. [65]
    Sheldon RA, van Pelt S (2013) Enzyme immobilization in biocatalysis: Why, what and how. Chem Soc Rev 42:6223–6235CrossRefGoogle Scholar
  66. [66]
    St. Clair NL, Navia MA (1992) Cross-linked enzyme crystals as robust biocatalysts. J Am Chem Soc 114:7314–7316CrossRefGoogle Scholar
  67. [67]
    Sun B, Hartl F, Castiglione K, Weuster-Botz D (2015) Dynamic mechanistic modeling of the multienzymatic one-pot reduction of dehydrocholic acid to 12-keto ursodeoxycholic acid with competing substrates and cofactors. Biotechnol Prog 31:375–386CrossRefGoogle Scholar
  68. [68]
    Sun B, Kantzow C, Bresch S, Castiglione K, Weuster-Botz D (2013): Multi-enzymatic one-pot reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid with whole-cell biocatalysts. Biotechnol Bioeng 110:68–77CrossRefGoogle Scholar
  69. [69]
    Vicenzi JT, Zmijewski MJ, Reinhardt MR, Landen BE, Muth WL, Marler PG (1997) Large-scale stereoselective enzymatic ketone reduction with in situ product removal via polymeric adsorbent resins. Enzyme Microb Technol 20:494–499CrossRefGoogle Scholar
  70. [70]
    Talekar S, Joshi A, Joshi G, Kamat P, Haripurkar R, Kambale S (2013) Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Advances 3:12485–12511CrossRefGoogle Scholar
  71. [71]
    Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué FO (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84(2):377–410CrossRefGoogle Scholar
  72. [72]
    Weuster-Botz D (2007) Process intensification of whole-cell biocatalysis with ionic liquids. Chem Rec 7:334–340CrossRefGoogle Scholar
  73. [73]
    Willis WM, Marangoni AG (2002) Enzymatic interesterification. In: Akoh CC, Min DB (Hrsg) Food lipids, S 839–875, Marcell Dekker, New YorkGoogle Scholar
  74. [74]
    Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosc Biotechnol Biochem 60:1391–1400CrossRefGoogle Scholar
  75. [75]
    Zimmermann TP, Robins KT, Hoeks FWJM (1997) Bio-Transformation in the production of l-carnitine. In: Collins AN, Sheldrake GN, Crosby J (Hrsg) Chirality in industry, S 287–305, John Wiley & Sons, New YorkGoogle Scholar
  76. [76]
    Zelinski T, Waldmann H (1997) Cross-linked enzyme crystals (CLECs): Efficient and stable biocatalysts for preparative organic chemistry. Angew Chem Int Ed 36:722–724CrossRefGoogle Scholar
  77. [77]
    Zmijewski MJ, Vicenzi JT, Landen BE, Muth W, Marler P, Anderson B (1997) Enantioselective reduction of 3,4-methylene-dioxyphenylacetone using Candida famata and Zygosaccharomyces rouxii. Appl Microbio Biotechnol 47:162–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Friedrich-Alexander-Universität Erlangen-NürnbergLehrstuhl für BioverfahrenstechnikErlangenDeutschland
  2. 2.Technische Universität MünchenLehrstuhl für BioverfahrenstechnikGarchingDeutschland

Personalised recommendations