Motivation und Handeln pp 297-329 | Cite as
Biopsychologische Aspekte der Motivation
Zusammenfassung
Dieses Kapitel gibt eine Übersicht über biopsychologische Erklärungsansätze in der Motivationspsychologie. Diese sehen Motivation in affektiven Bewertungen von Reizen und Situationen verankert, verorten diese Prozesse und ihre Auswirkungen auf das Verhalten in spezifischen Hirnregionen (Amygdala, Striatum, orbitofrontaler Cortex, Hypothalamus) und beschäftigen sich mit der Rolle von Neurotransmittern und Hormonen. Das Kapitel erörtert neben allgemeinen Prinzipien und Mechanismen motivationaler Prozesse und deren Abgrenzung von anderen Formen der Verhaltensregulation auch ausgewählte spezifische Motivationssysteme (Nahrungsaufnahme, soziale Bindung, Dominanz, Sexualität).
Literatur
- Adolphs, R. & Tranel, D. (2000). Emotion recognition and the human amygdala. In J. P. Aggleton (Hrsg.), The amygdala. A functional analysis (S. 587–630). New York: Oxford University Press.Google Scholar
- Aharon, I., Etcoff, N., Ariely, D., Chabris, C. F., O’Connor, E. & Breiter, H. C. (2001), Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron, 32, 537–551.PubMedCrossRefGoogle Scholar
- Albert, D. J., Jonik, R. H. & Walsh, M. L. (1992). Hormone-dependent aggression in male and female rats: experiential, hormonal, and neural foundations. Neuroscience and Biobehavioral Reviews, 16, 177–192.PubMedCrossRefGoogle Scholar
- Albert, D. J., Petrovic, D. M., Walsh, M. L. & Jonik, R. H. (1989). Medial accumbens lesions attenuate testosterone-dependent aggression in male rats. Physiology & Behavior, 46, 625–631.CrossRefGoogle Scholar
- Atkinson, J. W. (1957). Motivational determinants of risk-taking behavior. Psychological Review, 64, 359–372.CrossRefPubMedGoogle Scholar
- Atkinson, J. W. (1981). Studying personality in the context of an advanced motivational psychology. American Psychologist, 36, 117–128.CrossRefGoogle Scholar
- Atkinson, J. W. & Birch, D. (1970). The dynamics of action. New York: Wiley.Google Scholar
- Balleine, B. W., Delgado, M. R. & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27, 8161–8165.PubMedCrossRefGoogle Scholar
- Bartels, A. & Zeki, S. (2000). The neural basis of romantic love. Neuroreport, 11, 3829–3834.PubMedCrossRefGoogle Scholar
- Bartels, A. & Zeki, S. (2004). The neural correlates of maternal and romantic love. Neuroimage, 21, 1155–1166.PubMedCrossRefGoogle Scholar
- Baum, M. J. (1992). Neuroendocrinology of sexual behavior in the male. In J. B. Becker, S. M. Breedlove & D. Crews (Hrsg.), Behavioral endocrinology (S. 97–130). Cambridge, MA: MIT.Google Scholar
- Bechara, A., Damasio, H. & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.PubMedCrossRefGoogle Scholar
- Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.PubMedCrossRefGoogle Scholar
- Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews, 20, 1–25.PubMedCrossRefGoogle Scholar
- Berridge, K. C. (2001). Reward learning: Reinforcement, incentives and expectations. In D. L. Medin (Hrsg.), The psychology of learning and motivation (Bd. 40, S. 223–278). New York, NY: Academic Press.Google Scholar
- Berridge, K. C. & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86, 646–664.PubMedPubMedCentralCrossRefGoogle Scholar
- Berridge, K. C. & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369.PubMedCrossRefGoogle Scholar
- Berridge, K. C. & Robinson, T. E. (2003). Parsing reward. Trends in Neuroscience, 26, 507–513.CrossRefGoogle Scholar
- Billington, C. J. & Levine, A. S. (1992). Hypothalamic neuropeptide Y regulation of feeding and energy metabolism. Current Opinion in Neurobiology, 2, 847–851.PubMedCrossRefGoogle Scholar
- Bindra, D. (1978). How adaptive behavior is produced: a perceptual-motivational alternative to response-reinforcement. Behavioral and Brain Sciences, 1, 41–91.CrossRefGoogle Scholar
- Blood, A. J. & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98, 11818–11823.CrossRefGoogle Scholar
- Brewin, C. R., Dalgleish, T. & Joseph, S. (1996). A dual representation theory of posttraumatic stress disorder. Psychological Review, 103, 670–686.PubMedCrossRefGoogle Scholar
- Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. (2010). Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 68, 815–834.PubMedPubMedCentralCrossRefGoogle Scholar
- Cabanac, M. (1971). Physiological role of pleasure. Science, 173, 1103–1107.PubMedCrossRefGoogle Scholar
- Cabanac, M. (1992). Pleasure: the common currency. Journal of Theoretical Biology, 155, 173–200.PubMedCrossRefGoogle Scholar
- Cabanac, M. (2014). The fifth influence. Or, the dialectics of pleasure (2. Aufl.). Green Bay, WI: BookWhirl.Google Scholar
- Cahill, L. (2000). Modulation of long-term memory in humans by emotional arousal: adrenergic activation and the amygdala. In J. P. Aggleton (Hrsg.), The amygdala. A functional analysis (S. 425–446). New York: Oxford University Press.Google Scholar
- Cardinal, R. N., Parkinson, J. A., Hall, J. & Everitt, B. J. (2002). Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews, 26, 321–352.CrossRefGoogle Scholar
- Carroll, L., Voisey, J. & van Daal, A. (2004). Mouse models of obesity. Clin Dermatol, 22, 345–349.PubMedCrossRefGoogle Scholar
- Carver, C. S. & Scheier, M. F. (1998). On the self-regulation of behavior. New York: Cambridge University Press.CrossRefGoogle Scholar
- Corr, P. J., Pickering, A. D. & Gray, J. A. (1997). Personality, punishment, and procedural learning: a test of J.A. Gray’s anxiety theory. Journal of Personality and Social Psychology, 73, 337–344.PubMedCrossRefGoogle Scholar
- Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews: Neuroscience, 10, 59–70.PubMedCrossRefGoogle Scholar
- Craig, W. (1918). Appetites and aversions as constituents of instincts. Biological Bulletin of Woods Hole, 34, 91–107.CrossRefGoogle Scholar
- Dabbs, J. M., Frady, R. L., Carr, T. S. & Besch, N. F. (1987). Saliva testosterone and criminal violence in young adult prison inmates. Psychosomatic Medicine, 49, 174–182.PubMedCrossRefGoogle Scholar
- Dabbs, J. M. & Hargrove, M. F. (1997). Age, testosterone, and behavior among female prison inmates. Psychosomatic Medicine, 59, 477–480.PubMedCrossRefGoogle Scholar
- Damasio, A. R. (1994). Descartes’ error. Emotion, reason, and the human brain. London: Papermac.Google Scholar
- Darwin, C. (1871). The descent of man, and selection in relation to sex. New York: Appleton.CrossRefGoogle Scholar
- de Araujo, I. E., Kringelbach, M. L., Rolls, E. T. & Hobden, P. (2003). Representation of umami taste in the human brain. Journal of Neurophysiology, 90, 313–319.PubMedCrossRefGoogle Scholar
- Delville, Y., DeVries, G. J. & Ferris, C. F. (2000). Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain, Behavior and Evolution, 55, 53–76.PubMedCrossRefGoogle Scholar
- Depue, R. A. & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491–569.PubMedGoogle Scholar
- Depue, R. A., Luciana, M., Arbisi, P., Collins, P. & Leon, A. (1994). Dopamine and the structure of personality: relation of agonist-induced dopamine activity to positive emotionality. Journal of Personality and Social Psychology, 67, 485–498.PubMedCrossRefGoogle Scholar
- Depue, R. A. & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation. Behav Brain Sci, 28, 313–350; discussion 350–395.PubMedGoogle Scholar
- Domjan, M., Blesbois, E. & Williams, J. (1998). The adaptive significance of sexual conditioning: Pavlovian control of sperm release. Psychological Science, 9, 411–415.CrossRefGoogle Scholar
- Eisenegger, C., Naef, M., Snozzi, R., Heinrichs, M. & Fehr, E. (2010). Prejudice and truth about the effect of testosterone on human bargaining behaviour. Nature, 463, 356–359.PubMedCrossRefGoogle Scholar
- Epstein, L. H., Truesdale, R., Wojcik, A., Paluch, R. A. & Raynor, H. A. (2003). Effects of deprivation on hedonics and reinforcing value of food. Physiology and Behavior, 78, 221–227.PubMedCrossRefGoogle Scholar
- Everitt, B. J. (1990). Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neuroscience and Biobehavioral Reviews, 14, 217–232.PubMedCrossRefGoogle Scholar
- Eysenck, H. J. (1967). The biological basis of personality. Springfield, Ill: Thomas.Google Scholar
- Fleming, A. S., Corter, C., Franks, P., Surbey, M., Schneider, B. & Steiner, M. (1993). Postpartum factors related to mother’s attraction to newborn infant odors. Developmental Psychobiology, 26, 115–132.PubMedCrossRefGoogle Scholar
- Friedman, J. M. & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395, 763–770.PubMedCrossRefGoogle Scholar
- Fuster, J. M. (2001). The prefrontal cortex – an update: time is of the essence. Neuron, 30, 319–333.PubMedCrossRefGoogle Scholar
- Gianotti, M., Roca, P. & Palou, A. (1988). Body weight and tissue composition in rats made obese by a cafeteria diet. Effect of 24 hours starvation. Horm Metab Res, 20, 208–212.PubMedCrossRefGoogle Scholar
- Graham, J. M. & Desjardins, C. (1980). Classical conditioning: Induction of luteinizing hormone and testosterone secretion in anticipation of sexual activity. Science, 210, 1039–1041.PubMedCrossRefGoogle Scholar
- Gray, J. A. (1971). The psychology of fear and stress. New York: McGraw-Hill.Google Scholar
- Gray, J. A. (1981). A critique of Eysenck’s theory of personality. In H. J. Eysenck (Hrsg.), A model for personality (S. 246–276). Heidelberg: Springer.CrossRefGoogle Scholar
- Gray, P. B., Chapman, J. F., Burnham, T. C., McIntyre, M. H., Lipson, S. F. & Ellison, P. T. (2004). Human male pair bonding and testosterone. Hum Nat, 15, 119–131.PubMedCrossRefGoogle Scholar
- Greenough, A., Cole, G., Lewis, J., Lockton, A. & Blundell, J. (1998). Untangling the effects of hunger, anxiety, and nausea on energy intake during intravenous cholecystokinin octapeptide (CCK-8) infusion. Physiology and Behavior, 65, 303–310.PubMedCrossRefGoogle Scholar
- Hall, J. L., Stanton, S. J. & Schultheiss, O. C. (2010). Biopsychological and neural processes of implicit motivation. In O. C. Schultheiss & J. C. Brunstein (Hrsg.), Implicit motives (S. 279–307). New York, NY: Oxford University Press.CrossRefGoogle Scholar
- Harlow, H. & Harlow, M. H. (1966). Learning to love. American Scientist, 54, 244–272.PubMedGoogle Scholar
- Hepper, P. G. (1994). Long-term retention of kinship recognition established during infancy in the domestic dog. Behavioural Processes, 33, 3–14.PubMedCrossRefGoogle Scholar
- Ikemoto, S. & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Research Reviews, 31, 6–41.PubMedCrossRefGoogle Scholar
- Insel, T. R. (1997). A neurobiological basis of social attachment. Am J Psychiatry, 154, 726–735.PubMedCrossRefGoogle Scholar
- Insel, T. R., Winslow, J. T., Wang, Z. & Young, L. J. (1998). Oxytocin, vasopressin, and the neuroendocrine basis of pair bond formation. Adv Exp Med Biol, 449, 215–224.PubMedCrossRefGoogle Scholar
- Irani, B. G. & Haskell-Luevano, C. (2005). Feeding effects of melanocortin ligands – a historical perspective. Peptides, 26, 1788–1799.PubMedCrossRefGoogle Scholar
- Kendrick, K. M. (2004). The neurobiology of social bonds. Journal of Neuroendocrinology, 16, 1007–1008.PubMedCrossRefGoogle Scholar
- Keverne, E. B. & Curley, J. P. (2004). Vasopressin, oxytocin and social behaviour. Current Opinion in Neurobiology, 14, 777–783.PubMedCrossRefGoogle Scholar
- Keverne, E. B. & Kendrick, K. M. (1994). Maternal behaviour in sheep and its neuroendocrine regulation. Acta Paediatr Suppl, 397, 47–56.PubMedCrossRefGoogle Scholar
- Keverne, E. B., Martensz, N. D. & Tuite, B. (1989). Beta-endorphin concentrations in cerebrospinal fluid of monkeys are influenced by grooming relationships. Psychoneuroendocrinology, 14, 155–161.PubMedCrossRefGoogle Scholar
- Killcross, S., Robbins, T. W. & Everitt, B. J. (1997). Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature, 388, 377–380.PubMedCrossRefGoogle Scholar
- Klüver, H. & Bucy, P. C. (1937). „Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. American Journal of Physiology, 119, 352–353.Google Scholar
- Klüver, H. & Bucy, P. C. (1939). Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology and Psychiatry, 42, 979–1000.CrossRefGoogle Scholar
- Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T. et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.PubMedCrossRefGoogle Scholar
- Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435, 673–676.PubMedCrossRefGoogle Scholar
- Kringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nature Reviews: Neuroscience, 6, 691–702.PubMedCrossRefGoogle Scholar
- LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.PubMedPubMedCentralCrossRefGoogle Scholar
- LeDoux, J. E. (1996). The emotional brain. New York: Simon & Schuster.Google Scholar
- LeDoux, J. E. (2002). The synaptic self. New York, NY: Viking.Google Scholar
- LeVay, S. & Hamer, D. H. (1994). Evidence for a biological influence in male homosexuality. Scientific American, 270, 44–49.PubMedCrossRefGoogle Scholar
- Levine, A. S. & Billington, C. J. (1997). Why do we eat? A neural systems approach. Annu Rev Nutr, 17, 597–619.PubMedCrossRefGoogle Scholar
- Levine, A. S. & Billington, C. J. (2004). Opioids as agents of reward-related feeding: a consideration of the evidence. Physiology and Behavior, 82, 57–61.PubMedCrossRefGoogle Scholar
- Levine, A. S., Kotz, C. M. & Gosnell, B. A. (2003). Sugars and fats: the neurobiology of preference. Journal of Nutrition, 133, 831S–834S.PubMedCrossRefGoogle Scholar
- Lieberman, M. D. (2003). Reflective and reflexive judgment processes: A social cognitive neuroscience approach. In J. P. Forgas, K. R. Williams & W. v. Hippel (Hrsg.), Social judgments: Implicit and explicit processes (S. 44–67). New York: Cambridge University Press.Google Scholar
- Lieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H. & Way, B. M. (2007). Putting feelings into words: affect labeling disrupts amygdala activity in response to affective stimuli. Psychological Science, 18, 421–428.PubMedCrossRefGoogle Scholar
- Luria, A. R. (1973). The working brain. And introduction to neuropsychology. New York: Basic Books.Google Scholar
- Luria, A. R. & Homskaya, E. D. (1964). Disturbances in the regulative role of speech with frontal lobe lesions. In J. M. Warren & K. Akert (Hrsg.), The frontal grabular cortex and behavior (S. 353–371). New York: McGraw-Hill.Google Scholar
- Mann, P. E. & Bridges, R. S. (2001). Lactogenic hormone regulation of maternal behavior. Prog Brain Res, 133, 251–262.PubMedCrossRefGoogle Scholar
- Martinez, J. A. (2000). Body-weight regulation: causes of obesity. Proc Nutr Soc, 59, 337–345.PubMedCrossRefGoogle Scholar
- Matsumoto, M. & Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459, 837–841.PubMedPubMedCentralCrossRefGoogle Scholar
- Matsuzawa, T. (2003). The Ai project: historical and ecological contexts. Anim Cogn, 6, 199–211.PubMedCrossRefGoogle Scholar
- Matthews, G. & Gilliland, K. (1999). The personality theories of H. J. Eysenck and J. A. Gray: a comparative review. Personality and Individual Differences, 26, 583–626.CrossRefGoogle Scholar
- Mazur, A. (1985). A biosocial model of status in face-to-face primate groups. Social Forces, 64, 377–402.CrossRefGoogle Scholar
- Mazur, A. & Booth, A. (1998). Testosterone and dominance in men. Behavioral and Brain Sciences, 21, 353–397.PubMedPubMedCentralCrossRefGoogle Scholar
- McClelland, D. C. (1987). Human motivation. New York: Cambridge University Press.Google Scholar
- Morris, J. S., Öhman, A. & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393, 467–470.PubMedCrossRefGoogle Scholar
- Mowrer, O. H. (1960). Learning theory and behavior. New York: Wiley.CrossRefGoogle Scholar
- Murray, E. A. (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11, 489–497.PubMedCrossRefGoogle Scholar
- Nelson, E. E. & Panksepp, J. (1998). Brain substrates of infant-mother attachment: contributions of opioids, oxytocin, and norepinephrine. Neuroscience and Biobehavioral Reviews, 22, 437–452.PubMedCrossRefGoogle Scholar
- Nelson, R. J. (2011). An introduction to behavioral endocrinology (4. Aufl.). Sunderland, MA: SinauerGoogle Scholar
- O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.PubMedCrossRefGoogle Scholar
- O’Doherty, J., Rolls, E. T., Francis, S., Bowtell, R. & McGlone, F. (2001). Representation of pleasant and aversive taste in the human brain. Journal of Neurophysiology, 85, 1315–1321.PubMedCrossRefGoogle Scholar
- Ochsner, K. N., Bunge, S. A., Gross, J. J. & Gabrieli, J. D. (2002). Rethinking feelings: an FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14, 1215–1229.PubMedCrossRefGoogle Scholar
- Oyegbile, T. O. & Marler, C. A. (2005). Winning fights elevates testosterone levels in California mice and enhances future ability to win fights. Hormones and Behavior, 48, 259–267.PubMedCrossRefGoogle Scholar
- Packard, M. G., Cornell, A. H. & Alexander, G. M. (1997). Rewarding affective properties of intra-nucleus accumbens injections of testosterone. Behavioral Neuroscience, 111, 219–224.PubMedCrossRefGoogle Scholar
- Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York, NY: Oxford University Press.Google Scholar
- Panksepp, J. (2006). Emotional endophenotypes in evolutionary psychiatry. Prog Neuropsychopharmacol Biol Psychiatry, 30, 774–784.PubMedCrossRefGoogle Scholar
- Panksepp, J. & Biven, L. (2012). The archaeology of mind. Neuroevolutionary origins of human emotions. New York, NY: Norton.Google Scholar
- Pfaus, J. G., Damsma, G., Wenkstern, D. & Fibiger, H. C. (1995). Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats. Brain Research, 693, 21–30.PubMedCrossRefGoogle Scholar
- Porter, R. H. (1998). Olfaction and human kin recognition. Genetica, 104, 259–263.PubMedCrossRefGoogle Scholar
- Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Hrsg.), Classical conditioning II: current research and theory (S. 64–99). New York: Appleton-Century-Crofts.Google Scholar
- Robinson, S., Rainwater, A. J., Hnasko, T. S. & Palmiter, R. D. (2007). Viral restoration of dopamine signaling to the dorsal striatum restores instrumental conditioning to dopamine-deficient mice. Psychopharmacology (Berl), 191, 567–578.CrossRefGoogle Scholar
- Robinson, T. E. & Berridge, K. C. (2000). The psychology and neurobiology of addiction: an incentive– sensitization view. Addiction, 95 Suppl 2, S91–117.CrossRefGoogle Scholar
- Rolls, E. T. (1999). The brain and emotion. Oxford, UK: Oxford University Press.Google Scholar
- Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.PubMedCrossRefGoogle Scholar
- Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55, 11–29.PubMedCrossRefGoogle Scholar
- Rolls, E. T. (2005a). Emotion explained. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
- Rolls, E. T. (2005b). Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiology and Behavior, 85, 45–56.PubMedCrossRefGoogle Scholar
- Roney, J. R., Lukaszewski, A. W. & Simmons, Z. L. (2007). Rapid endocrine responses of young men to social interactions with young women. Hormones and Behavior, 52, 326–333.PubMedCrossRefGoogle Scholar
- Sapolsky, R. M. (1987). Stress, social status, and reproductive physiology in free-living baboons. In D. Crews (Hrsg.), Psychobiology and reproductive behavior: An evolutionary perspective (S. 291–322). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
- Schneirla, T. C. (1959). An evolutionary and developmental theory of biphasic processes underlying approach and withdrawal. In M. R. Jones (Hrsg.), Nebraska Symposium on Motivation (Bd. 7, S. 1–42). Lincoln, NE: University of Nebraska Press.Google Scholar
- Schultheiss, O. C. (2007). A biobehavioral model of implicit power motivation arousal, reward and frustration. In E. Harmon-Jones & P. Winkielman (Hrsg.), Social neuroscience: Integrating biological and psychological explanations of social behavior (S. 176–196). New York: Guilford.Google Scholar
- Schultheiss, O. C. (2008). Implicit motives. In O. P. John, R. W. Robins & L. A. Pervin (Hrsg.), Handbook of Personality: Theory and Research (3. Aufl., S. 603–633). New York: Guilford.Google Scholar
- Schultheiss, O. C. (2013). The hormonal correlates of implicit motives. Social and Personality Psychology Compass, 7, 52–65.CrossRefGoogle Scholar
- Schultheiss, O. C. & Brunstein, J. C. (2001). Assessing implicit motives with a research version of the TAT: Picture profiles, gender differences, and relations to other personality measures. Journal of Personality Assessment, 77, 71–86.PubMedCrossRefGoogle Scholar
- Schultheiss, O. C. & Köllner, M. (2014). Implicit motives and the development of competencies: A virtuous-circle model of motive-driven learning. In R. Pekrun & L. Linnenbrink-Garcia (Hrsg.), International handbook of emotions in education (S. 73–95). New York, NY: Taylor & Francis/Routledge.Google Scholar
- Schultheiss, O. C., Pang, J. S., Torges, C. M., Wirth, M. M. & Treynor, W. (2005). Perceived facial expressions of emotion as motivational incentives: Evidence from a differential implicit learning paradigm. Emotion, 5, 41–54.PubMedCrossRefGoogle Scholar
- Schultheiss, O. C., Wirth, M. M., Torges, C. M., Pang, J. S., Villacorta, M. A. & Welsh, K. M. (2005). Effects of implicit power motivation on men’s and women’s implicit learning and testosterone changes after social victory or defeat. Journal of Personality and Social Psychology, 88, 174–188.PubMedPubMedCentralCrossRefGoogle Scholar
- Schultheiss, O. C., Wirth, M. M., Waugh, C. E., Stanton, S. J., Meier, E. & Reuter-Lorenz, P. (2008). Exploring the motivational brain: Effects of implicit power motivation on brain activation in response to facial expressions of emotion. Social Cognitive and Affective Neuroscience, 3, 333–343.PubMedPubMedCentralCrossRefGoogle Scholar
- Schultz, W., Dayan, P. & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.PubMedCrossRefGoogle Scholar
- Seligman, M. E. P. (1970). On the generality of the laws of learning. Psychological Review, 77, 406–428.CrossRefGoogle Scholar
- Solomon, R. L. & Wynne, L. C. (1953). Traumatic avoidance learning: Acquisition in normal dogs. Psychological Monographs, 67.Google Scholar
- Squire, Larry R. & Zola, Stuart M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences, 93, 13515–13522.CrossRefGoogle Scholar
- Stanton, S. J., Beehner, J. C., Saini, E. K., Kuhn, C. M. & Labar, K. S. (2009). Dominance, politics, and physiology: voters’ testosterone changes on the night of the 2008 United States presidential election. PLoS One, 4, e7543.PubMedPubMedCentralCrossRefGoogle Scholar
- Stanton, S. J. & Schultheiss, O. C. (2009). The hormonal correlates of implicit power motivation. Journal of Research in Personality, 43, 942–949.PubMedPubMedCentralCrossRefGoogle Scholar
- Stricker, E. M. & Verbalis, J. G. (2002). Hormones and ingestive behaviors. In J. B. Becker, S. M. Breedlove & D. Crews (Hrsg.), Behavioral endocrinology (2. Aufl., S. 451–473). Cambridge MA: MIT.Google Scholar
- Stutz, A. M., Morrison, C. D. & Argyropoulos, G. (2005). The Agouti-related protein and its role in energy homeostasis. Peptides, 26, 1771–1781.PubMedCrossRefGoogle Scholar
- Sullivan, R. M., Wilson, D. A., Wong, R., Correa, A. & Leon, M. (1990). Modified behavioral and olfactory bulb responses to maternal odors in preweanling rats. Brain Res Dev Brain Res, 53, 243–247.PubMedCrossRefGoogle Scholar
- Swithers, S. E. & Martinson, F. A. (1998). Habituation of oral responding in adult rats. Behavioral Neuroscience, 112, 213–224.PubMedCrossRefGoogle Scholar
- Taira, K. & Rolls, E. T. (1996). Receiving grooming as a reinforcer for the monkey. Physiology and Behavior, 59, 1189–1192.PubMedCrossRefGoogle Scholar
- Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A. & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychological Review, 107, 411–429.PubMedCrossRefGoogle Scholar
- Thorndike, E. L. (1927). The law of effect. The American Journal of Psychology, 39, 212–222.CrossRefGoogle Scholar
- Toates, F. (1986). Motivational systems. Cambridge, UK: Cambridge University Press.Google Scholar
- Tucker, D. M. & Williamson, P. A. (1984). Asymmetric neural control systems in human self-regulation. Psychological Review, 91, 185–215.PubMedCrossRefGoogle Scholar
- Uvnäs-Moberg, K. (1998). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23, 819–835.PubMedCrossRefGoogle Scholar
- van der Westhuizen, D. & Solms, M. (2015). Basic emotional foundations of social dominance in relation to Panksepp’s affective taxonomy. Neuropsychoanalysis, 17, 19–37.CrossRefGoogle Scholar
- Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J. & Dolan, R. J. (2004). Distant influences of amygdala lesion on visual cortical activation during emotional face processing. [10.1038/nn1341]. Nature Neuroscience, 7, 1271–1278.PubMedCrossRefGoogle Scholar
- Wallen, K. (2001). Sex and context: hormones and primate sexual motivation. Hormones and Behavior, 40, 339–357.PubMedCrossRefGoogle Scholar
- Wassum, K. M. & Izquierdo, A. (2015). The basolateral amygdala in reward learning and addiction. Neuroscience and Biobehavioral Reviews, 57, 271–283.PubMedPubMedCentralCrossRefGoogle Scholar
- Westergaard, G. C., Suomi, S. J., Higley, J. D. & Mehlman, P. T. (1999). CSF 5–HIAA and aggression in female macaque monkeys: species and interindividual differences. Psychopharmacology (Berl), 146, 440–446.CrossRefGoogle Scholar
- Wiemers, U. S., Schultheiss, O. C. & Wolf, O. T. (2015). Public speaking in front of an unreceptive audience increases implicit power motivation and its endocrine arousal signature. Hormones and Behavior, 71, 69–74.PubMedPubMedCentralCrossRefGoogle Scholar
- Wilson, E. O. (1980). Sociobiology: The abridged edition. Cambridge, MA: Belknap/Harvard.Google Scholar
- Wingfield, J. C., Hegner, R. E., Dufty, A. M. & Ball, G. F. (1990). The „Challenge Hypothesis”: Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. The American Naturalist, 136, 829–846.CrossRefGoogle Scholar
- Winslow, J. T. & Insel, T. R. (2002). The social deficits of the oxytocin knockout mouse. Neuropeptides, 36, 221–229.PubMedCrossRefGoogle Scholar
- Wirth, M. M., Welsh, K. M. & Schultheiss, O. C. (2006). Salivary cortisol changes in humans after winning or losing a dominance contest depend on implicit power motivation. Hormones and Behavior, 49, 346–352.PubMedPubMedCentralCrossRefGoogle Scholar
- Woodson, J. C. (2002). Including `learned sexuality’ in the organization of sexual behavior. Neuroscience & Biobehavioral Reviews, 26, 69–80.CrossRefGoogle Scholar
- Wynne-Edwards, K. E. (2001). Hormonal changes in mammalian fathers. Hormones and Behavior, 40, 139–145.PubMedCrossRefGoogle Scholar
- Yamaguchi, S. & Ninomiya, K. (2000). Umami and food palatability. Journal of Nutrition, 130, 921S–926S.PubMedCrossRefGoogle Scholar
- Young, L. J. & Insel, T. R. (2002). Hormones and parental behavior. In J. B. Becker, S. M. Breedlove, D. Crews & M. M. McCarthy (Hrsg.), Behavioral endocrinology (2. Aufl., S. 331–369). Cambridge, MA: MIT.Google Scholar
- Zak, P. J., Kurzban, R. & Matzner, W. T. (2005). Oxytocin is associated with human trustworthiness. Hormones and Behavior, 48, 522–527.PubMedCrossRefGoogle Scholar
- Zehr, J. L., Maestripieri, D. & Wallen, K. (1998). Estradiol increases female sexual initiation independent of male responsiveness in rhesus monkeys. Hormones and Behavior, 33, 95–103.PubMedCrossRefGoogle Scholar