Optical and plasmonic properties of epigraphene

  • C. BergerEmail author
  • E. H. Conrad
  • W. A. de Heer
Part of the Condensed Matter book series (volume 45B)


This chapter discusses various optical and plasmonic properties of graphene which are used in ultrafast optical spectroscopy and terahertz generation.


  1. 1.
    Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Vizzini, S., Enriquez, H., Chiang, S., Soukiassian, P., Berger, C., de Heer, W.A., Lanzara, A., Conrad, E.H.: First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Bostwick, A., Speck, F., Seyller, T., Horn, K., Polini, M., Asgari, R., MacDonald, A.H., Rotenberg, E.: Observation of plasmarons in quasi-freestanding doped graphene. Science. 328, 999–1002 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Bostwick, A., Ohta, T., Seyller, T., Horn, K., Rotenberg, E.: Quasiparticle dynamics in graphene. Nat. Phys. 3, 36–40 (2007)CrossRefGoogle Scholar
  4. 4.
    Basov, D.N., Fogler, M.M., Lanzara, A., Wang, F., Zhang, Y.B.: Colloquium: graphene spectroscopy. Rev. Mod. Phys. 86, 959–994 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Sun, D., Divin, C., Berger, C., de Heer, W.A., First, P.N., Norris, T.B.: Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene. Phys. Rev. Lett. 104, 136802 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Liu, Y., Willis, R.F.: Plasmon-phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B. 81, 081406(R) (2010)Google Scholar
  7. 7.
    Wang, F., Liu, G., Rothwell, S., Nevius, M., Tejeda, A., Taleb-Ibrahimi, A., Feldman, L.C., Cohen, P.I., Conrad, E.H.: Wide-gap semiconducting graphene from nitrogen-seeded SiC. Nano Lett. 13, 4827–4832 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics. 4, 611–622 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Koppens, F.H.L., Mueller, T., Avouris, P., Ferrari, A.C., Vitiello, M.S., Polini, M.: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Avouris, P., Xia, F.N.: Graphene applications in electronics and photonics. MRS Bull. 37, 1225–1234 (2012)CrossRefGoogle Scholar
  12. 12.
    Wang, Y.Y., Ni, Z.H., Liu, L., Liu, Y.H., Cong, C.X., Yu, T., Wang, X.J., Shen, D.Z., Shen, Z.X.: Stacking-dependent optical conductivity of bilayer graphene. ACS Nano. 4, 4074–4080 (2010)CrossRefGoogle Scholar
  13. 13.
    Sun, D., Wu, Z.K., Divin, C., Li, X.B., Berger, C., de Heer, W.A., First, P.N., Norris, T.B.: Ultrafast relaxation of excited Dirac Fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    M.T. Mihnev, J.R. Tolsma, C.J. Divin, D. Sun, R. Asgari, M. Polini, C. Berger, W.A. de Heer, A.H. MacDonald, T.B. Norris, Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene, Nat. Commun., 6 (2015) 8105(8111pp).CrossRefGoogle Scholar
  15. 15.
    Mihnev, M.T., Wang, F., Liu, G., Rothwell, S., Cohen, P.I., Feldman, L.C., Conrad, E.H., Norris, T.B.: Evidence for bandgap opening in buckled epitaxial graphene from ultrafast time-resolved terahertz spectroscopy. Appl. Phys. Lett. 107, 173107 (2015.) 173105 ppADSCrossRefGoogle Scholar
  16. 16.
    Gierz, I., Petersen, J.C., Mitrano, M., Cacho, C., Turcu, I.C.E., Springate, E., Stöhr, A., Köhler, A., Starke, U., Cavalleri, A.: Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Mihnev, M.T., Kadi, F., Divin, C.J., Winzer, T., Lee, S., Liu, C.-H., Zhong, Z., Wang, X., Ruoff, R.S.B., Claire, de Heer, W.A., Malic, E., Knorr, A., Norris, T.B.: Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene. Nat. Nanotechnol. 7, 11617 (2016)Google Scholar
  18. 18.
    Winnerl, S., Orlita, M., Plochocka, P., Kossacki, P., Potemski, M., Winzer, T., Malic, E., Knorr, A., Sprinkle, M., Berger, C., de Heer, W.A., Schneider, H., Helm, M.: Carrier relaxation in epitaxial graphene photoexcited near the Dirac point. Phys. Rev. Lett. 107, 237401 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Breusing, M., Kuehn, S., Winzer, T., Malić, E., Milde, F., Severin, N., Rabe, J.P., Ropers, C., Knorr, A., Elsaesser, T.: Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B. 83, 153410 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Brida, D., Tomadin, A., Manzoni, C., Kim, Y.J., Lombardo, A., Milana, S., Nair, R.R., Novoselov, K.S., Ferrari, A.C., Cerullo, G., Polini, M.: Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Plochocka, P., Kossacki, P., Golnik, A., Kazimierczuk, T., Berger, C., de Heer, W.A., Potemski, M.: Slowing hot-carrier relaxation in graphene using a magnetic field. Phys. Rev. B. 80, 245415 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Mittendorff, M., Wendler, F., Malic, E., Knorr, A., Orlita, M., Potemski, M., Berger, C., de Heer, W.A., Schneider, H., Helm, M., Winnerl, S.: Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering. Nat. Phys. 11, 75–81 (2015)CrossRefGoogle Scholar
  23. 23.
    Sun, D., Rioux, J., Sipe, J.E., Zou, Y., Mihnev, M.T., Berger, C., de Heer, W.A., First, P.N., Norris, T.B.: Evidence for interlayer electronic coupling in multilayer epitaxial graphene from polarization-dependent coherently controlled photocurrent generation. Phys. Rev. B. 85, 165427 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Sun, D., Divin, C., Rioux, J., Sipe, J.E., Berger, C., de Heer, W.A., First, P.N., Norris, T.B.: Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference. Nano Lett. 10, 1293–1296 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Maysonnave, J., Huppert, S., Wang, F., Maero, S., Berger, C., de Heer, W., Norris, T.B., De Vaulchier, L.A., Dhillon, S., Tignon, J., Ferreira, R., Mangeney, J.: Terahertz generation by dynamical photon drag effect in graphene excited by femtosecond optical pulses. Nano Lett. 14, 5797–5802 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Karch, J., Olbrich, P., Schmalzbauer, M., Zoth, C., Brinsteiner, C., Fehrenbacher, M., Wurstbauer, U., Glazov, M.M., Tarasenko, S.A., Ivchenko, E.L., Weiss, D., Eroms, J., Yakimova, R., Lara-Avila, S., Kubatkin, S., Ganichev, S.D.: Dynamic Hall effect driven by circularly polarized light in a graphene layer. Phys. Rev. Lett. 105, 227402 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Hao, X., Chen, Y.F., Wang, Z.G., Liu, J.B., He, J.R., Li, Y.R.: Significant photoelectrical response of epitaxial graphene grown on Si-terminated 6H-SiC. Chinese Phys B. 22, 076804 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Singh, R.S., Nalla, V., Chen, W., Ji, W., Wee, A.T.S.: Photoresponse in epitaxial graphene with asymmetric metal contacts. Appl. Phys. Lett. 100, 093116 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Sun, R.J., Zhang, Y., Li, K., Hui, C., He, K., Ma, X.C., Liu, F.: Tunable photoresponse of epitaxial graphene on SiC. Appl. Phys. Lett. 103, 013106 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Singh, R.S., Nalla, V., Chen, W., Wee, A.T.S., Ji, W.: Laser patterning of epitaxial graphene for Schottky junction photodetectors. ACS Nano. 5, 5969–5975 (2011)CrossRefGoogle Scholar
  31. 31.
    Itkis, M.E., Wang, F.H., Ramesh, P., Bekyarova, E., Niyogi, S., Chi, X.L., Berger, C., de Heer, W.A., Haddon, R.C.: Enhanced photosensitivity of electro-oxidized epitaxial graphene. Appl. Phys. Lett. 98, 093115 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Kusdemir, E., Ozkendir, D., Firat, V., Celebi, C.: Epitaxial graphene contact electrode for silicon carbide based ultraviolet photodetector. J. Phys. D: Appl. Phys. 48, 095104 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Fei, Z., Rodin, A.S., Andreev, G.O., Bao, W., McLeod, A.S., Wagner, M., Zhang, L.M., Zhao, Z., Thiemens, M., Dominguez, G., Fogler, M.M., Castro Neto, A.H., Lau, C.N., Keilmann, F., Basov, D.N.: Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature. 487, 82–85 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Chen, J.N., Badioli, M., Alonso-Gonzalez, P., Thongrattanasiri, S., Huth, F., Osmond, J., Spasenovic, M., Centeno, A., Pesquera, A., Godignon, P., Elorza, A.Z., Camara, N., de Abajo, F.J.G., Hillenbrand, R., Koppens, F.H.L.: Optical nano-imaging of gate-tunable graphene plasmons. Nature. 487, 77–81 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Liu, Y., Willis, R.F., Emtsev, K.V., Seyller, T.: Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys. Rev. B. 78, 201403(R) (2008)Google Scholar
  36. 36.
    Tegenkamp, C., Pfnur, H., Langer, T., Baringhaus, J., Schumacher, H.W.: Plasmon electron-hole resonance in epitaxial graphene. J. Phys. Condens. Matter. 23, 012001 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    van Zwol, P.J., Thiele, S., Berger, C., de Heer, W.A., Chevrier, J.: Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon. Phys. Rev. Lett. 109, 264301 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Crassee, I., Orlita, M., Potemski, M., Walter, A.L., Ostler, M., Seyller, T., Gaponenko, I., Chen, J., Kuzmenko, A.B.: Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. Nano Lett. 12, 2470–2474 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Crassee, I., Levallois, J., Walter, A.L., Ostler, M., Bostwick, A., Rotenberg, E., Seyller, T., van der Marel, D., Kuzmenko, A.B.: Giant Faraday rotation in single- and multilayer graphene. Nat. Phys. 7, 48–51 (2011)CrossRefGoogle Scholar
  40. 40.
    Poumirol, J.M., Yu, W., Chen, X., Berger, C., de Heer, W.A., Smith, M.L., Ohta, T., Pan, W., Goerbig, M.O., Smirnov, D., Jiang, Z.: Magnetoplasmons in quasineutral epitaxial graphene nanoribbons. Phys. Rev. Lett. 110, 246803 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Mitrofanov, O., Yuc, W., Thompson, R.J., Jiang, Y., Greenberg, Z.J., Palmer, J., Brenerb, I., Pand, W., Berger, C., de Heer, W.A., Jiang, Z.: Terahertz near-field imaging of surface plasmon waves in graphene structures. Solid State Commun. 224, 47–52 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    Mitrofanov, O., Yu, W.L., Thompson, R.J., Jiang, Y.X., Brener, I., Pan, W., Berger, C., de Heer, W.A., Jiang, Z.G.: Probing terahertz surface plasmon waves in graphene structures. Appl. Phys. Lett. 103, 111105 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Kumada, N., Tanabe, S., Hibino, H., Kamata, H., Hashisaka, M., Muraki, K., Fujisawa, T.: Plasmon transport in graphene investigated by time-resolved electrical measurements. Nat. Commun. 4, 1363 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institut NéelCNRS - University Grenoble - AlpesGrenobleFrance
  3. 3.TICNNTianjin UniversityTianjinChina

Personalised recommendations