Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds
Abstract
In this paper, we revisit fully homomorphic encryption (FHE) based on GSW and its ring variants. We notice that the internal product of GSW can be replaced by a simpler external product between a GSW and an LWE ciphertext.
We show that the bootstrapping scheme FHEW of Ducas and Micciancio [11] can be expressed only in terms of this external product. As a result, we obtain a speed up from less than 1 s to less than 0.1 s. We also reduce the 1 GB bootstrapping key size to 24 MB, preserving the same security levels, and we improve the noise propagation overhead by replacing exact decomposition algorithms with approximate ones.
Moreover, our external product allows to explain the unique asymmetry in the noise propagation of GSW samples and makes it possible to evaluate deterministic automata homomorphically as in [13] in an efficient way with a noise overhead only linear in the length of the tested word.
Finally, we provide an alternative practical analysis of LWE based scheme, which directly relates the security parameter to the error rate of LWE and the entropy of the LWE secret key.
Keywords
Fully homomorphic encryption Bootstrapping Lattices LWE GSWNotes
Acknowledgements
This work has been supported in part by the CRYPTOCOMP project.
References
- 1.Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Crypt. 9(3), 169–203 (2015)MathSciNetzbMATHGoogle Scholar
- 3.Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_17 CrossRefGoogle Scholar
- 4.Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)Google Scholar
- 6.Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of 45th STOC, pp. 575–584. ACM (2013)Google Scholar
- 7.Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS, pp. 97–106 (2011)Google Scholar
- 8.Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25385-0_1 CrossRefGoogle Scholar
- 9.Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–536. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46800-5_20 Google Scholar
- 10.Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based e-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–265. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29360-8_16 CrossRefGoogle Scholar
- 11.Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46800-5_24 Google Scholar
- 12.Frigo, M., Johnson, S.G.: The design, implementation of FFTW3. In: Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231 (2005). Special issue on “Program Generation, Optimization, and Platform Adaptation”Google Scholar
- 13.Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: generalized worst-case to average-case reductions. IACR Crypt. ePrint Arch. 2014, 48 (2014)zbMATHGoogle Scholar
- 14.Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78967-3_3 CrossRefGoogle Scholar
- 15.Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM STOC, pp. 169–178 (2009)Google Scholar
- 16.Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40041-4_5 CrossRefGoogle Scholar
- 17.Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19074-2_21 CrossRefGoogle Scholar
- 18.Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36095-4_19 CrossRefGoogle Scholar
- 19.Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_1 CrossRefGoogle Scholar
- 20.Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 820–849. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49890-3_31 CrossRefGoogle Scholar
- 21.Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar